
CY4672 Reference Design Guide
Document # 001-16968 Revision **

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com
[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_1

Copyrights
Copyrights

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress
Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress
product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor
intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express
written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use
and in doing so indemnifies Cypress against all charges.

Cypress, the Cypress Logo, PRoC, and WirelessUSB are trademarks or registered trademarks of Cypress Semiconductor
Corporation. Windows is a registered trademark of Microsoft Corporation. All other product or company names used in this
manual may be trademarks, registered trademarks, or servicemarks of their respective owners.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by
and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty
provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom soft-
ware and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci-
fied in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress
does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-
sonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems appli-
cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.
2 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_2

Contents
1. Introduction 9
1.1 Scope...9
1.2 Chapter Overviews ...9
1.3 Support ..9
1.4 Conventions...10

1.4.1 Definitions ..10
1.4.2 Acronyms ...10

2. WirelessUSB™ Protocol 2.2 13
2.1 General Overview ..13

2.1.1 Radio Channel Management ...13
2.1.2 Pseudo Noise Codes ...13
2.1.3 Chip Error Correction ...14
2.1.4 Automatic Acknowledgment (AutoACK)...14
2.1.5 Network ID ...14
2.1.6 Manufacturing ID..14
2.1.7 Channel Selection Algorithm..15

2.2 Protocol Modes..15
2.2.1 Ping Mode (Bridge Only)..16
2.2.2 Idle Mode (HID only) ..17
2.2.3 Reconnect Mode (HID only)...17
2.2.4 Button Bind Mode...17
2.2.5 Enhanced KISSBind™...18
2.2.6 Unbind..20
2.2.7 Data Mode..20
2.2.8 Back Channel Data Support...20
2.2.9 Dynamic Data Rate and Dynamic PA...22

2.3 Packet Structures ..23
2.3.1 Bind/KISSBind Request Packet (HID) ...23
2.3.2 Bind Response Packet (Bridge) ..24
2.3.3 Connect Request (HID)..24
2.3.4 Connect Response Packet (Bridge)...24
2.3.5 Ping Packet (Bridge) ...25
2.3.6 Data Packet/Back Channel Data Packet (Bridge and HID)............................25

2.4 Bind and Reconnect Timing...26
2.5 Signature Byte ...28
2.6 Encryption ...29

2.6.1 TEA Encryption ..29
2.6.1.1 TEA Key Management over WirelessUSB.......................................29

2.6.2 AES Encryption ..30
2.6.2.1 AES Key Management...31

2.6.3 Encryption and Power Consumption Trade Off..31
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 3

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_3

Contents
3. Mouse 33
3.1 Introduction..33

3.1.1 Design Features ..33
3.2 Hardware Overview ...33

3.2.1 RDK Mouse Assembly ...33
3.2.2 Hardware Block Diagram...35
3.2.3 Schematics ...35
3.2.4 Hardware Considerations ...36

3.3 Firmware Architecture ...36
3.3.1 ROM/RAM Usage ..36
3.3.2 PRoC LP Device Configuration..36

3.3.2.1 Global Configuration..38
3.3.2.2 SPI Master User Module ...38
3.3.2.3 Programmable Interval Timer User Module.....................................39
3.3.2.4 Flash Security..39

3.3.3 Model ...39
3.3.4 Common Code...40

3.3.4.1 Generated Library Code ..40
3.3.4.2 Debounce Module ...40
3.3.4.3 SPI Module ..40
3.3.4.4 Radio Driver...41
3.3.4.5 Protocol Module...41
3.3.4.6 Flash Module ...41
3.3.4.7 Port Module ...41
3.3.4.8 Poll Module..41
3.3.4.9 Timer Module...41
3.3.4.10 ISR Module..42

3.3.5 Application Code..42
3.3.5.1 Mouse Module ...42
3.3.5.2 Optical Module...43
3.3.5.3 Testmode Module..43
3.3.5.4 Buttons Module..44
3.3.5.5 Mfgtest Module ..44
3.3.5.6 Wheel Module..44
3.3.5.7 Battery Module ..45

3.3.6 Configuration Options ..45
3.3.6.1 MOUSE_REPORT_IN_MS ...45
3.3.6.2 MOUSE_ACTIVE_MS ...45
3.3.6.3 MOUSE_DISCONNECTED_POLL_MS ..45
3.3.6.4 MOUSE_TX_TIMEOUT_MS ...45
3.3.6.5 MOUSE_CONNECT_ATTEMPT_TIMES..46
3.3.6.6 PLATFORM_H ..46
3.3.6.7 MOUSE_800_NOT_400_CPI..46
3.3.6.8 MOUSE_BATTERY_STATUS...46
3.3.6.9 MOUSE_TEST_MODE ...46
3.3.6.10 MFG_TEST_CODE ...46
3.3.6.11 MFG_TX_MODES...46
3.3.6.12 MASTER_PROTOCOL ...46
3.3.6.13 PAYLOAD_LENGTH ...46
3.3.6.14 KISS_BIND..47
3.3.6.15 RSSI_QUALIFY...47
3.3.6.16 AUTO_CONNECT...47

3.3.7 Platform and Architecture Portability..47
4 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_4

Contents
3.3.8 Initialization ..47
3.3.9 Wireless Protocol Data Payload...47

3.3.9.1 Packet Format 1...48
3.3.9.2 Packet Format 2...48
3.3.9.3 Packet Format 3...48

3.3.10 Interrupt usage and timing ...48
3.3.11 Code Performance Analysis...49

3.4 Development Environment ..49
3.4.1 Tools...49
3.4.2 Tips and Tricks ...50

3.4.2.1 M8C Sleep ...50
3.4.2.2 Watchdog Timer...50

3.4.3 Critical Test Points..50

4. Keyboard 51
4.1 Introduction ..51

4.1.1 Design Features...51
4.2 Hardware Overview ...51

4.2.1 RDK Keyboard Assembly...52
4.2.2 Schematic ..54
4.2.3 Keyboard Matrix ...55
4.2.4 Hardware Considerations...55

4.3 Firmware Architecture..56
4.3.1 ROM/RAM usage ...56
4.3.2 enCoRe II Device Configuration...56

4.3.2.1 Global Configuration ..58
4.3.2.2 SPI Master User Module..59
4.3.2.3 Programmable Interval Timer User Module59
4.3.2.4 Flash Security ..59

4.3.3 Model ...60
4.3.4 Common Code ...60

4.3.4.1 Generated Library Code ..60
4.3.4.2 Radio Driver ...60
4.3.4.3 Protocol Module ...61
4.3.4.4 Flash Module ...61
4.3.4.5 ISR Module ..61
4.3.4.6 Timer Module ...61

4.3.5 Application Code ..61
4.3.5.1 Keyboard Module...61
4.3.5.2 Mfgtest Module ..62
4.3.5.3 Battery Module...62
4.3.5.4 Test Module ...62
4.3.5.5 Encrypt Module ..63

4.3.6 Configuration Options ..63
4.3.6.1 KEYBOARD_KEEP_ALIVE_TIMEOUT...63
4.3.6.2 KEY_DOWN_DELAY_SAMPLE_PERIOD63
4.3.6.3 KEYBOARD_DEBOUNCE_COUNT..63
4.3.6.4 KEYBOARD_MULTIMEDIA_SUPPORT ...63
4.3.6.5 KEYBOARD_TEST_MODES...64
4.3.6.6 KEYBOARD_TEST_MODE_PERIOD ...64
4.3.6.7 PANGRAM_TEST_MODE...64
4.3.6.8 KEYBOARD_BATTERY_VOLTAGE_SUPPORT............................64
4.3.6.9 LP_RDK_KEYBOARD_MATRIX ...64
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 5

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_5

Contents
4.3.6.10 KEYBOARD_TX_TIMEOUT..64
4.3.6.11 TIMER_CAL ..64
4.3.6.12 ENCRYPT_TEA ..64
4.3.6.13 ENCRYPT_AES ..64
4.3.6.14 MFG_TEST_CODE ...64
4.3.6.15 MFG_ENTER_BY_PIN..64
4.3.6.16 MFG_TX_MODES...65
4.3.6.17 MOUSE_EMULATION_MODE..65
4.3.6.18 BACK_CHANNEL_SUPPORT ..65
4.3.6.19 MASTER_PROTOCOL ...65
4.3.6.20 PAYLOAD_LENGTH ...65
4.3.6.21 KISS_BIND..65
4.3.6.22 RSSI_QUALIFY...65
4.3.6.23 PLATFORM_H ..65

4.3.7 Platform and Architecture Portability..65
4.3.8 Initialization ..66
4.3.9 Wireless Protocol Data Payload ..66

4.3.9.1 Keyboard Application Report Formats...66
4.3.10 Ghost Key Detection..70
4.3.11 Interrupt Usage / Timing ..70
4.3.12 Code Performance Analysis ..71

4.4 Modifying the Keyboard Matrix or Adding New Keys ..72
4.4.1 Modifying the Keyboard Matrix ..72
4.4.2 Adding New Keys ..72

4.5 Development Environment ..73
4.5.1 Tools ..73
4.5.2 Tips and Tricks...73

4.5.2.1 M8C Sleep...73
4.5.2.2 Watchdog Timer ..73

4.5.3 Critical Test Points ...74

5. Bridge 75
5.1 Introduction..75

5.1.1 Design Features ..75
5.2 Hardware Overview ...75

5.2.1 Bridge Photographs ...76
5.2.2 In-System Programming ..76
5.2.3 Schematics ..77
5.2.4 LED Usage ..77

5.3 Firmware Architecture ...78
5.3.1 ROM/RAM Usage ..78
5.3.2 PRoC LP Device Configuration..78

5.3.2.1 Global Configuration..80
5.3.2.2 SPI Master User Module ...81
5.3.2.3 USB Device User Module..81
5.3.2.4 1 Millisecond Interval Timer User Module81
5.3.2.5 Flash Security..81

5.3.3 Model ...82
5.3.4 Common Code...82

5.3.4.1 PSoC Generated Library Code..82
5.3.4.2 Flash..83
5.3.4.3 Timer ...83
5.3.4.4 Radio Driver...83
6 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_6

Contents
5.3.4.5 Master Protocol..83
5.3.5 Application Code ..83

5.3.5.1 Bridge Module..83
5.3.5.2 USB Module...84
5.3.5.3 Mfgtest Module ..84
5.3.5.4 Encrypt Module ..84

5.3.6 Configuration Options ..85
5.3.6.1 MFG_TEST_CODE ...85
5.3.6.2 MFG_TX_MODES ...85
5.3.6.3 MFG_ENTER_BY_PIN..85
5.3.6.4 MFG_ENTER_BY_BUTTON ...85
5.3.6.5 MFG_ENTER_BY_USBSE1..85
5.3.6.6 ENCRYPT_TEA...85
5.3.6.7 ENCRYPT_AES...85
5.3.6.8 GREEN_LED_ON_TIME ...85
5.3.6.9 DOWNKEY_TIME_OUT ..85
5.3.6.10 BACK_CHANNEL_SUPPORT...86
5.3.6.11 MASTER_PROTOCOL..86
5.3.6.12 PAYLOAD_LENGTH ...86
5.3.6.13 POWER_BIND...86
5.3.6.14 KISS_BIND ..86
5.3.6.15 RSSI_QUALIFY ...86
5.3.6.16 PROMISCUOUS_MODE...86
5.3.6.17 DAL_ENABLE..86

5.3.7 Platform and Architecture Portability ..87
5.3.8 Initialization ..87
5.3.9 Wireless Protocol Data Payload...87
5.3.10 Suspend and Remote Wakeup ..87
5.3.11 Interrupt Usage/Timing...87
5.3.12 Code Performance Analysis...88

5.4 USB Interface ..88
5.4.1 USB Descriptors...88

5.4.1.1 Device/Config Descriptors ...89
5.4.1.2 Keyboard HID Report Descriptor ...89
5.4.1.3 Mouse/Keyboard HID Report Descriptor ...90

5.4.2 Keyboard Report Format..93
5.4.3 Mouse Report Format ..95
5.4.4 Battery Level and Link Quality Reports..95

5.4.4.1 Requesting a New Battery Reading...96
5.4.4.2 Obtaining the RadioParams Report ...96

5.4.5 Example USB Bus Analyzer (CATC) Traces..97
5.5 Development and Debug Environment..100

5.5.1 Tools...100
5.5.2 Tips and Tricks ...100

6. Manufacturing Test Support, MTK 101
6.1 Introduction ..101
6.2 MTK Block Diagram...101
6.3 MTK Serial Protocol...101
6.4 MTK RF Protocol ...103
6.5 MTK DUT Source Code Porting ..103
6.6 Accessing MTK in the DUT ...103
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 7

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_7

Contents
7. Regulatory Testing Results 105
7.1 Introduction..105

8. Power Considerations 107
8.1 RDK Keyboard...107

8.1.1 Usage Model..107
8.1.2 Current Measurements ..107
8.1.3 Battery Life Calculations ..108

8.2 RDK Mouse ...108
8.2.1 Usage Model..108
8.2.2 Current Measurements ..109
8.2.3 Battery Life Calculations ..109

9. Software Guide 111
9.1 Introduction..111
9.2 Software Code Modules ..111

9.2.1 USB HID API module... 111
9.2.1.1 CHidDevice Class Methods...112
9.2.1.2 CHidManager Class Methods..113

9.2.2 System Tray Module .. 114
9.2.2.1 CCySysTray Class Methods..114

9.2.3 WirelessUSB System Tray Application Module ... 115
9.2.3.1 CWirelessUSBTrayApp Class Methods ..115
9.2.3.2 CMainFrame Class Methods ...116
9.2.3.3 CWirelessUSBStatusPropertyPage Class Methods......................117
9.2.3.4 CWirelessUSBStatusPropertySheet Class Methods.....................117
9.2.3.5 CHidTrayDevice Class Methods..118
9.2.3.6 CHidTrayManager Class Methods ..118

9.3 Development Environment ..118

Appendix A. References 119

Index 121

Revision History 125
8 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_8

1. Introduction
1.1 Scope
This document was written for firmware and hardware developers that want to understand and make
modifications to the PRoC™ LP KBM Reference Design Kit (RDK).

This document provides a description of the hardware along with architecture and configuration
options for the PRoC LP KBM RDK.

1.2 Chapter Overviews

1.3 Support
Technical Support can be reached at http://www.cypress.com/support or can be contacted by phone
at: 1-800-541-4736.

Table 1-1. Overview of the CY4672 Reference Design Guide Chapters
Chapter Description

Introduction
(on page 9)

Describes the purpose of this guide, overviews each chapter, supplies
product support information, and lists documentation conventions.

WirelessUSB™ Protocol 2.2
(on page 13)

Presents an overview of the radio channel management and pseudo
noise code. Lists the protocol modes, packet structures, bind and recon-
nect timing, signature byte and the encryption methods.

Mouse
(on page 33)

Discusses the design features, hardware, firmware architecture, and the
development environment.

Keyboard
(on page 51)

Describes the design features, hardware, firmware architecture, modify-
ing the keyboard matrix or adding new keys, and the development envi-
ronment.

Bridge
(on page 75)

Describes the design features, hardware, firmware architecture, USB
interface, and the development and debut environment.

Manufacturing Test Support, MTK
(on page 101)

Details the MTK block diagram, MTK serial protocol, MTK RF protocol,
MTK DUT source code porting, and accessing MTK in the DUT.

Regulatory Testing Results
(on page 105)

Describes all EMC test results.

Power Considerations
(on page 107)

Details the usage mode, current measurments, and battery life calcula-
tions for both the RDK keyboard and RDK mouse.

Software Guide
(on page 111) Describes software code modules and the development environment.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 9

[+] Feedback

http://www.cypress.com/support
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_9

Introduction
1.4 Conventions
The following are easily identifiable conventions used throughout this user guide.

1.4.1 Definitions
The following are some definitions of words found in this document. There may be other meanings to
these definitions outside of this document.

Bridge – The bridge is the receiving radio and USB hardware that connects to the PC and enumer-
ates as a Human Interface Device.

Device – The reference to device in this document means the keyboard or mouse device that is
sending radio packets to the bridge.

1.4.2 Acronyms
The following are acronyms used throughout this user guide.

Table 1-2. Documentation Conventions
Convention Usage

Courier New
Size 12

Displays file locations and source code:
C:\ …cd\icc\, user entered text.

Italics Displays file names and reference documentation:
sourcefile.hex

[bracketed, bold] Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > New Project Represents menu paths:
File > New Project > Clone

Bold Displays commands, menu paths and selections, and icon
names in procedures:
Click the Debugger icon, and then click Next.

Table 1-3. Acronyms
Acronym Description

AES advanced encryption standard
ADC analog-to-digital converter
API application programming interface
CRC cyclic redundancy check; mechanism to help detect errors
DSSS direct sequence spread spectrum communication

DVK
development kit. It is produced by Cypress Semiconductor for
showcasing Cypress products with a working development
environment

HID
human interface device. It is a product that allows an individ-
ual to interface with a computer. A keyboard and mouse are
HID devices

MID manufacturing ID

PN codes pseudo noise codes; WirelessUSB™ systems encode their
data within PN codes
10 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_10

Introduction
RDK

reference design kit; it is produced by Cypress Semiconductor
and used by third parties to produce off-the-shelf products.
Everything required to take a product to production is included
in the kit. This document is part of the CY4672 Keyboard/
Mouse RDK

RSSI receive signal strength indicator
SOP start of packet
TEA tiny encryption algorithm

USB universal serial bus; a well-known serial standard used in the
computing world

WirelessUSB a trademark name for Cypress 2.4 GHz radio products

Table 1-3. Acronyms (continued)
Acronym Description
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 11

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_11

Introduction
12 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_12

2. WirelessUSB™ Protocol 2.2
2.1 General Overview
The WirelessUSB™ protocol 2.2 is designed to address 2-way Human Interface Devices (HID) as
well as general purpose devices; it provides reliable 2-way communication between a wireless
device configured as 1:1 (one HID and one bridge) or 2:1 (two HIDs and one bridge) systems. The
WirelessUSB protocol 2.2 allows HID applications to establish a connection to the bridge and
receive ACK and DATA packets from the bridge.

Figure 2-1. WirelessUSB 2-Way System

2.1.1 Radio Channel Management
WirelessUSB uses the unlicensed 2.4 GHz Industrial, Scientific, and Medical (ISM) band for wireless
connectivity. WirelessUSB uses 78 of the available channels and splits the 78 channels into 6 chan-
nel subsets consisting of 13 channels each. The channel subsets are used by each network to mini-
mize the probability of interference from other WirelessUSB systems (see the Channel Selection
Algorithm on page 15 section for more details). A designated channel subset is used during bind
mode (along with an associated pseudo noise code) in order to enable all WirelessUSB devices to
effectively communicate during this procedure.

2.1.2 Pseudo Noise Codes
Pseudo noise codes (PN codes) are the codes used to achieve the special matched filter character-
istics of direct sequence spread spectrum (DSSS) communication. Certain codes referred to as ‘mul-
tiplicative codes’ are used for WirelessUSB 2-way communication. These codes have minimal cross-
correlation properties, meaning they are less susceptible to interference caused by overlapping
transmissions on the same channel. The length of the PN code results in different communication
characteristics. Higher data rates are achieved with 32-chips/bit PN codes, while 64-chips/bit PN
codes allow a longer range. The number of frequency/code pairs is large enough to comfortably

Host PC
or Laptop

WirelessUSB
Keyboard

(Transceiver)

WirelessUSB
Mouse

(Transceiver)WirelessUSB-LS
Bridge

(Transceiver)

USB

 -

CY4672 Reference Design Guide, Document # 001-16968 Revision ** 13

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_13

WirelessUSB™ Protocol 2.2
accommodate hundreds of WirelessUSB devices in the same space. Each bridge/HID pair must use
the same PN code and channel in order to communicate with each other.

2.1.3 Chip Error Correction
In the presence of interference (or near the limits of range), the transmitted PN code will often be
received with some PN code chips corrupted. DSSS receivers use a data correlator to decode the
incoming data stream. WirelessUSB LP supports a separate start of packet (SOP) and data thresh-
old. The RDK uses an SOP threshold of ‘4’. The data threshold is set to the default value of ‘4’.

2.1.4 Automatic Acknowledgment (AutoACK)
The WirelessUSB LP radio contains an automatic acknowledgment feature that allows it to automat-
ically send an ACK to any valid packet that is received. The WirelessUSB LP radio also uses the
concept of transactions to allow the radio in the HID to automatically power down after transmitting a
packet and receiving an AutoACK instead of waiting for the firmware to power the radio down. This
conserves power and reduces the firmware complexity of WirelessUSB applications.

2.1.5 Network ID
The network ID contains the parameters for the channel selection algorithm as well as the PN code
to be used. HIDs retrieve the network ID information from the bridge during the bind procedure. A
special network ID is reserved for bind mode, known as the bind ID. The bind ID gives a common
channel subset so that any two devices can communicate with each other during bind mode. The
network ID is composed of the following fields:

PIN This is a random number between 2–5 that defines the channel subset and is
used in the channel selection algorithm.

Base Channel This is the first channel to be used in the channel selection algorithm, that deter-
mines which channels are contained in the channel subset.

PN Code This is used as an index to select one of 10 used SOP PN codes, as noted in the
radio driver document.

CRC Seed This 8-bit value is used for the CRC calculation, that further diversifies transmis-
sions from different networks. All packets sent between non-bound devices use
the default CRC seed of 0x0000. All packets sent between bound devices use a
CRC seed that is common to all devices bound to a particular bridge or network
but unique from network to network.

2.1.6 Manufacturing ID
Each WirelessUSB radio contains a 4-byte manufacturing ID (MID), that has been laser fused into
the device during manufacturing. The bridge uses its MID to help randomize channel subsets, PN
codes and network CRC seeds. The bridge sends its MID to the HIDs when binding. The HID then
stores the bridge’s MID in non-volatile memory after binding. The HID sends the bridge’s MID as part
of the connect request packet, allowing the bridge to verify the identity of the HID when establishing
a connection.

Both the bridge and the HID use the bridge’s MID as to generate the device network ID components.
The following equations ensure that each network will have a unique set of network ID components:

PN Code = [(mid_1 << 2) + mid_2 + mid_3] mod 10

Base Channel = [(mid_2 >> 2) – (mid_1 << 5) + mid_3] mod 78

PIN = [(((mid_1 -mid_2) & PIN_MASK) + MIN_PIN)] mod 78

CRC Seed = ((mid_2 >> 6)) + mid_1 + mid_3 if=0 then Seed = 1
14 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_14

WirelessUSB™ Protocol 2.2
2.1.7 Channel Selection Algorithm
The channel selection algorithm produces a subset containing 13 of the possible 78 channels. The
channel selection algorithm is based on the network ID, with each channel in the subset being six
megahertz from the nearest neighboring channels in the subset. This algorithm reduces the possibil-
ity of multiple bridges selecting the same channels in the same order at the same time.

2.2 Protocol Modes

Figure 2-2. Protocol Master

POR

Ping
Mode

Data
Mode

Manual
Bind Mode

Connected Data

KISSBind

Ping

Ping for other networks,
sample the background

RSSI

Bind channel
 and PN code

Connected channel and
PN Code

Background RSSI or Link
quality exceeded
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 15

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_15

WirelessUSB™ Protocol 2.2
Figure 2-3. Protocol Slave

2.2.1 Ping Mode (Bridge Only)
Ping mode is used by the bridge to find an available channel; channels are unavailable if they are
being used by another network with the same PN code, or if there is excessive noise on the channel.
The bridge first listens for activity on the selected channel. If the channel is inactive the bridge alter-
nately transmits ping packets and listens for ping response packets for a defined* period of time.
During ping mode the bridge also checks the Receive Signal Strength Indicator (RSSI) of the radio in
order to determine if a non-WirelessUSB device is using this channel (or a WirelessUSB device on
the same channel using a different PN code). If a ping response is received, indicating that another
bridge is using this channel the bridge selects the next channel using the channel selection algorithm
and repeats this procedure. The bridge also selects another channel using the channel selection
algorithm if RSSI is high; this indicates that there are other RF sources on the channel. If a ping
response is not received and RSSI is low, the bridge assumes the channel is available and moves to
data mode. Bridges send ping response packets in response to all received ping packets if the
bridge is in data mode. HIDs never respond to ping packets.

[*The timeout value is configurable using the PING_NUM_RSSI define.]

POR

Idle
Mode

Bind
Mode

Data
Mode

Reconnect
Mode

Bound

UnBound,
KISSBind disabled

Wait for
user Bind

event

KISSBind
Mode

UnBound,
KISSBind enabled

Bind fails

Lost
connection
with bridge

Bridge
found

Search for bridge
and sleep if
necessary

Sleep when no data
to be sent
16 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_16

WirelessUSB™ Protocol 2.2
2.2.2 Idle Mode (HID only)
The HID enters this mode after a power on reset before it has had any communication with the RDK
bridge. If the bridge’s MID is stored in non-volatile memory the HID retrieves the bridge’s MID, calcu-
late the network ID and move to reconnect mode. If the bridge’s MID is not stored in non-volatile
memory the HID waits in idle mode until a user-initiated event causes the HID to enter bind mode.
After a defined period of time in idle mode the HID goes to sleep in order to conserve power. When
the HID wakes up due to a user action, it re-enters Idle mode.

2.2.3 Reconnect Mode (HID only)
Reconnect mode is used by the HID to discover the current channel used by the bridge and to estab-
lish a connection with the bridge. Upon entering reconnect mode the HID uses the network ID to
select a channel using the channel selection algorithm. The HID transmits ‘connect requests’ con-
taining the manufacturing ID of the desired bridge and listens for an AutoACK. If an AutoACK is
received the HID disables the AutoACK and continues to listen for a ‘connect response’. If a bridge
in data mode receives a ‘connect request’ containing its manufacturing ID, it sends a positive ‘con-
nect response’ to the HID. If a HID receives a positive ‘connect response’ it moves to data mode. If a
HID does not receive a positive ‘connect response’, it selects the next channel using the channel
selection algorithm and repeats the procedure. If the HID does not receive a positive ‘connect
response’ on any of the channels in the subset, it enters goes to sleep in order to conserve power.
When the HID wakes up due to a user action it reenters reconnect mode.

2.2.4 Button Bind Mode

HID
Bind mode allows the HID to retrieve the bridge’s manufacturing ID which is used to calculate the
network ID. Upon entering bind mode the HID sets the current channel and PN code to the channel
and PN code specified in the bind ID. The HID then transmits bind requests and listens for an
AutoACK. If an AutoACK is received, the HID (keeping the AutoACK enabled) continues to listen for
a bind response (containing the bridge’s MID) from the bridge. If a bind response is not received, the
HID moves to the next channel. If a bind response is received, the HID stores the bridge’s MID, cal-
culates the network ID, and moves to reconnect mode. The algorithms used to calculate these fields
are implementation specific and should be the same on the bridge and the HID (both devices use the
bridge’s manufacturing ID to calculate these fields). If a defined* period of time has elapsed while in
bind mode without receiving a bind response, the HID exits bind mode and restores the channel and
PN code settings that were in use prior to entering bind mode. Bind mode should last long enough
for the user to locate and push the button on both the bridge and the HID. A user-initiated event can
cause the HID to enter bind mode from any other mode.

[*The timeout value is configurable using the BIND_RETRY_COUNT define.]

Bridge
Upon entering bind mode the bridge sets the current channel and PN code to the channel and PN
code specified in the bind ID. The bridge listens for a bind request on each channel for approxi-
mately 320 ms before selecting the next channel using the channel selection algorithm. This reduces
the possibility of the bridge not receiving the bind request from the HID in the event of channel inter-
ference. If the bridge receives a bind request from the HID containing a supported device type, it
sends a bind response containing the bridge’s manufacturing ID and then switches to ping mode.
The bridge also switches to ping mode if the defined* time period has elapsed while in bind mode.
The channel selection algorithm uses the bind ID to produce the channel subset for bind mode.

[*The timeout value is configurable using the NUM_CHANNELS_PER_SUBSET define.]
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 17

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_17

WirelessUSB™ Protocol 2.2
2.2.5 Enhanced KISSBind™
KISSBind provides the ability to automatically bind out of the box without any intervention by the
user other than installing the batteries. KISSBind essentially is a bind process while in the data
mode. The bridge goes through the normal process of pinging and then going to the data mode. The
device upon powering up and determining that it is not bound, transmits KISS_BIND_REQ packets
on all channels and PN codes looking for a bridge that has not been bound to that specific device.
The bridge keeps track of which device is connected and only responds with a KISS_BIND_RESP
packet if it is not already bound to that specific device. Once bound, the bridge stores the device
specific state in Flash.

HID
When the HID first powers up it checks the validity of the flash bind parameters. If the bind parame-
ters checksum is not valid then the HID is considered to be un-bound. The HID then transmits KISS-
Bind request packets on all channels and PN codes using a CRC seed of zero in order to locate the
bridge. If an AutoACK is received the HID enters the receive state to listen for a KISSBind response
packet from the bridge. The HID completes the KISSBind process if a KISSBind response packet is
received from the bridge. If, after RX_PACKET_TIMEOUT (ms), the HID does not receive from the
bridge it then resumes the channel/PN code search for the bridge. If the search sequence is unsuc-
cessful after BIND_RETRY_COUNT attempts, then the HID enters a low power state waiting for a
button press or other activity and begin the search process all over.

Bridge
The bridge, upon powering up, enters the ping mode in order to locate a suitable channel/PN code
based on its MID. When the ping mode is complete the bridge then enters the data mode. If a KISS-
Bind Request packet is received, the bridge checks the bind status for the specific device that sent
the KISSBind request (mouse or keyboard) based on the device type in the packet header. If the
specific device has not been bound then the bridge proceeds by sending a KISSBind response
packet and completing the KISSBind process. Once an AutoACK is received from the HID in
response to the KISSBind response, the bridge updates the Flash bind status for the specific device.
18 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_18

WirelessUSB™ Protocol 2.2
Figure 2-4. KISSBind Transaction Sequence

MasterSlave
KISSBind Request

Ch N, PN 1

KISSBind Response

Connection
Request

Auto ACK

Auto ACK

R
X

KISSBind Request
Ch N + 1, PN 1

Master is in the
connected state on

Ch N+2 PN 3

KISSBind Request
Ch N, PN 3

KISSBind Request
Ch N + 1, PN 3

KISSBind Request
Ch N + 2, PN 3

Auto ACK

Master responds
only if a device of
this type is not
already bound

Master records this
device as being

connected in
FLASH

Data

Auto ACKNormal traffic
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 19

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_19

WirelessUSB™ Protocol 2.2
2.2.6 Unbind
An ‘unbind’ mechanism allows the bridge and HIDs to return to their default unbind mode as if they
had never bound to any system before.

The bridge dedicates a bind flag to each device type that it supports. A bind flag is a 1-bit field in
Flash. Once the bridge has been bound to an HID by either KISSBind or button bind mechanism, the
bridge sets the corresponding bind flag for that device type and stores the flag in its Flash.

If the bind flag for a particular device type is set, the bridge treats future KISSBind packets from this
device type as nonfunctional packets.

The bridge unbind process clears all bind flags, and the bridge allows devices to KISSBind.

The HID dedicates a byte in its Flash, called SIGNATURE, to indicate whether or not the HID has
bound to a bridge before. The SIGNATURE is set to 0x90 after a successful KISSBind or button
bind. If the SIGNATURE is not set to 0x90, the HID tries to KISSBind to any bridge in the area that
allows the HID to KISSBind. Once the SIGNATURE is set, the HID does not attempt to KISSBind.

Note Once the HID enters unbind mode, power-cycle the HID to exit this mode. Once the bridge is
unbound, the bridge continues to communicate with any HID that already has the bridge MID. In
order to completely unbind the system, the HIDs and bridge must be unbound.

2.2.7 Data Mode

HID
When the HID application has data to send to the bridge the HID transmits a DATA packet and lis-
tens for an AutoACK. If an AutoACK is not received, the HID retransmits the packet. If the HID does
not receive an AutoACK after N DATA_PACKETS_RETRIES of retransmissions of the data packet it
assumes the channel has become unavailable due to excessive interference and moves to recon-
nect mode.

Bridge
Data mode allows application data to be transmitted from the HID to the bridge. The bridge continu-
ously listens for data packets from the HID. When valid data is received from the HID the bridge
sends an ACK to the HID and sends the data to the USB host. If invalid data is received the bridge
ignores the packet and listens for the HID to retransmit the data. The bridge monitors the interfer-
ence level and moves to ping mode if the RSSI interference threshold RSSI_NOISE_THRESHOLD
is reached. This ensures that the bridge is operating on a clean channel.

2.2.8 Back Channel Data Support
Back channel data support provides a mechanism for the host to send data to the device at the
request of the device. The device is responsible for interrogating the bridge for back channel data
either as part of a forward data packet or a simple null packet. The device starts by setting the BCDR
bit in the data header. If the packet is successfully acknowledged by the bridge then the device
inverts the upper byte of the checksum seed and then wait for N ms before trying to receive from the
bridge for M ms. The bridge also inverts the checksum seed and wait N ms before attempting to
transmit to the device. If the bridge has more data to send then it can also set the BCDR flag and can
then expect the device to receive another packet.
20 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_20

WirelessUSB™ Protocol 2.2
Figure 2-5. Back Channel Transaction Sequence
BridgeDevice 1 Device 2

BCD=1

Auto ACK

Data

CRC Seed = A,A

CRC Seed = !A,A

CRC Seed = A,A

CRC Seed = !A,A

BCD=1

CRC Seed = A,A CRC Seed = A,A

CRC Seed = !A,A

CRC Seed = A,A Device 1 and
bridge do not

respond to device
2 due to seed

missmatch

Data

CRC Seed = !A,A

BCD=1

D
e
l
a
y

R
X

Data

CRC Seed = A,A

CRC Seed = !A,A

CRC Seed = A,A

CRC Seed = !A,A

Data
CRC Seed = !A,A

CRC Seed = !A,A

BCD=1

Device 1 checks
for back channel

data

Device 2 transmits
when device 1 is
looking for back

channel data

Dongle indicates
that it has more

data to send

Auto ACK

Auto ACK

Auto ACK

Auto ACK

Auto ACK

Auto ACK
R
X

R
X

R
X

D
e
l
a
y

D
e
l
a
y

D
e
l
a
y

CY4672 Reference Design Guide, Document # 001-16968 Revision ** 21

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_21

WirelessUSB™ Protocol 2.2
2.2.9 Dynamic Data Rate and Dynamic PA
Dynamic data rate and dynamic PA provide the ability to improve the immunity to interference and
reduce power consumption. Dynamic data rate is device behavior based and two data modes, GFSK
and 8DR, are used for the data transmission. Depending on the retry number of prior packets, the
protocol determines whether to stay with the current data mode or change to another data mode.
The dynamic PA relies on both the behavior and the bridge signal strength to the device.

HID
Dynamic Data Rate

If the HID fails to transmit either the application or protocol data to the bridge after
DATA_PACKET_RETRIES of retransmissions, it will toggle data modes and transmit again. If the
HID still fails after DATA_PACKET_RETRIES of retransmissions, it assumes the channel has
become unavailable due to excessive interference and moves to reconnect mode.

If the HID transmits application data successfully, the retries for PKT_NUM packets are summed up
in ‘total_retry’. If the total_retry exceeds the threshold ‘total_retry_threshold’, the HID changes to
another data mode.

The total_retry_threshold is an adaptive number that has a minimum value of
TOTAL_RETRY_THRESHOLD_LOW. The following rules are applied to it:
■ When the data mode is toggled, the total_retry for the previous data mode will be used as current

total_retry_threshold.
■ If the total_retry is zero, the total_retry_threshold will be decreased one until

TOTAL_RETRY_THRESHOLD_LOW.

Dynamic PA

If the total_retry is zero and the RSSI reading for the bridge AutoACK packet is above
PA_RSSI_RX_THRESHOLD, the PA is decreased by one until DATA_MODE_PA_MIN.

When one of the following cases occurs, the PA will be set back to its maximum value of
DATA_MODE_PA_MAX:
■ The data mode is toggled.
■ The RSSI reading for the bridge AutoACK packet is equal to or below

PA_RSSI_RX_THRESHOLD.
■ The retries for any packet exceeds PA_RETRY_THRESHOLD.

Bridge
The bridge does not need to implement the dynamic PA because it is bus powered. Its PA is always
set to the maximum value DATA_MODE_PA_MAX in order to get the highest transmission power.

The dynamic data rate is driven by the devices. When the bridge receives the packet, it sets the
transmission data mode to the data mode of received packet. As a result, when it sends the back
channel data, it uses the same data mode as the device.
22 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_22

WirelessUSB™ Protocol 2.2
2.3 Packet Structures
The first byte of each packet is the Header byte. Some packets may consist only of the header byte
while other packets may contain up to five bytes.

Type[7:4]: The following packet types are supported:

BIND_REQ (HID) = 0x0, // Bind Request Packet Type

BIND_RESP (bridge) = 0x0, // Bind Response Packet Type

CONNECT_REQ = 0x1, // Connect Request Packet Type

CONNECT_RESP = 0x2, // Connect Response Packet Type

PING_PACKET = 0x3, // Ping Packet Type

DATA_PACKET = 0x4, // Data Packet Type

BACK_CHANNEL_PACKET = 0x5, // Back Channel Packet Type

NULL_PACKET = 0x7, // Null Packet Type

ENCRYPT_KEY_REQ = 0x8, // Key Packet Type for encryption

ENCRYPT_KEY_RESP = 0x8, // Key Packet Type for encryption

KISS_BIND_REQ = 0xD, // KISSBind request

KISS_BIND_RESP = 0xD, // KISSBind response

Res[3:0]: The lower nibble is used for packet specific information. The packet definitions below
define how these four bits are used in each case.

2.3.1 Bind/KISSBind Request Packet (HID)

Byte 1

Packet Type: 0 for bind request and 0xD for KISSBind request.

Device Type: This is a 2-bit field that specifies a vendor-defined device type. This allows the bridge
to determine HID type.

Currently the following device types have been defined in the PRoC™ LP RDK:

0x0 Presenter
0x1 Reserved
0x2 Keyboard
0x3 Mouse

Byte 1

Bits: 7:4 3:0

Field: Packet
Type Reserved

Byte 1

Bits: 7:4 3 2.1 0

Field: 0/0D Reserved Device
Type Reserved
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 23

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_23

WirelessUSB™ Protocol 2.2
2.3.2 Bind Response Packet (Bridge)

Byte 1

Packet Type: 0 for bind request, 0xD for KISSBind request

Device Type: This is a 2-bit field that specifies a vendor-defined device type. This allows the bridge
to determine HID type.

Currently the following device types have been defined in the KBM RDK:

0x0 Presenter
0x1 Reserved
0x2 Keyboard
0x3 Mouse

Byte 2-5

Manufacturing ID (MID 1–MID 4): This is the 4-byte manufacturing ID retrieved from the bridge’s
radio and will be used by the HID.

2.3.3 Connect Request (HID)

Byte 1

Device Type: 0x1

Byte 2-5

Manufacturing ID (MID 1–MID 4): This is the 4-byte MID that was received from the bridge during the
bind procedure. This enables the bridge to identify if the HID belongs to its network.

2.3.4 Connect Response Packet (Bridge)
Connect response packets are sent from the bridge to the HID in Idle and data mode in response to
valid connect requests.

Byte 1

Packet Type: 2

Flag (F): This is a 1-bit field that specifies a positive or negative connect response packet
(1 = positive, 0 = negative).

Byte 1 2 3 4 5

Bits: 7:4 3 2:1 0 7:0 7:0 7:0 7:0

Field: 0 Reserved Device
Type

Reserved Bridge
MID1

Bridge
MID 2

Bridge
MID 3

Bridge
MID 4

Byte 1 2 3 4 5

Bits: 7:4 3 2:1 0 7:0 7:0 7:0 7:0

Field: 1 Reserved Device
Type Reserved Bridge

MID 1
Bridge
MID 2

Bridge
MID 3

Bridge
MID 4

Byte 1

Bits: 7:4 3 2:0

Field: 2 Flag Reserved
24 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_24

WirelessUSB™ Protocol 2.2
2.3.5 Ping Packet (Bridge)

Byte 1

Packet Type: 3

Flag (F): This is a 1-bit field that specifies a ping or ping response (0 = Ping, 1 = Ping Response).

2.3.6 Data Packet/Back Channel Data Packet (Bridge and HID)
Data packets are sent from the HID to the bridge in connected mode. They are also sent from the
bridge to the HID in connected mode if there is an asynchronous back channel.

Byte 1

Data Packet Type:

4 = Data Packet type

5 = Back Channel Packet Type

BCDR: This is a 1-bit field used to request back channel data. Setting this bit indicates to the bridge
that the HID will be listening for data following the transaction.

Data Toggle Bit: This is a 1-bit field that is toggled for each new data packet. It is used to distinguish
between new and retransmitted packets.

Data Device Type 0/1: This is a 2-bit field that specifies a vendor-defined device type. This allows the
bridge to determine HID type. The two bits are swapped in order to be backward compatible. In most
cases the data device type is the same as the device type in the bind request and connect request.
However, they may differ when one device tries to simulate the other device, for instance, the key-
board simulates the mouse.

DT0=0, DT1= 0 Presenter (0x0)

DT0=1, DT1= 0 Undefined (0x1)

DT0=0, DT1= 1 Keyboard (0x2)

DT0=1, DT1= 1 Mouse (0x3)

Byte 2-N

Data Byte 0–N: This is byte-aligned application data.

Byte 1

Bits: 7:4 3:1 0

Field: 3 Reserved Flag

Byte 1 2 N

Bits: 7:4 3 2 1 0 7:0 7:0 7:0 7:0

Field: 4 / 5 BCDR Toggle DT0 DT1 Byte 1 Byte N
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 25

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_25

WirelessUSB™ Protocol 2.2
2.4 Bind and Reconnect Timing
When the bind button on the bridge is pressed, the bridge goes into bind mode. In bind mode, the
bridge uses the bind ID to communicate with any HIDs that want to bind to the system (see section
Button Bind Mode on page 17 for more information on the bind ID). The bridge enables its receiver
and ‘listens’ for any bind request packets from the HID, starting from channel 0. The bridge listens for
approximately 320 ms on the channel, and if there is no bind request packet, it moves to the next
channel in the bind channel subset (the bind channel subset consists of channels 0, 6, 12, 18, 24 …
78). It takes the bridge approximately 4.16 seconds to sequentially ‘listen’ on all 13 channels of the
bind channel subset. The bridge repeats the process for up to five times before it times out and exits
bind mode (time out is approximately 21 seconds). If it receives a valid bind request packet, it imme-
diately responds to the request with a bind response packet and exit the bind mode.

When the bind button on the HID is pressed, the HID goes into bind mode. While in bind mode, the
HID also uses the bind ID to communicate with the bridge. The HID sends a bind request packet and
listens for an AutoACK packet. If the HID does not receive the AutoACK, it moves to the next chan-
nel in the bind channel subset and repeats the bind request packet. It takes the HID approximately
23.4 ms to sequentially hop through all 13 channels of the bind channel subset, and the HID repeats
the process for up to 1000 times before it times out. Refer to Figure 2-6 Bind Timing Diagram.

Because the bridge’s and HID’s bind buttons may be pressed at different times, the HID and the
bridge could be on very different channels when the two are in bind mode. However, because the
HID ‘hops’ very quickly on all bind channels while the bridge stays relatively long on a channel, the
bridge and HID will have multiple opportunities of being on the same channel. As a result, binding
normally completes very quickly as soon as the bridge and the HID are both in bind mode (at 1.8 ms/
channel ‘hopping’ frequency of the HID and the bridge’s 320 ms/channel, the two will ‘meet’ on the
same channel at least 13 times in any 320 ms period).
26 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_26

WirelessUSB™ Protocol 2.2
Figure 2-6. Bind Timing Diagram

The bridge uses the RSSI to determine the noise level on the channel. If the channel has become
noisy, the bridge moves to ping mode to find a quieter channel in its channel subset.

When the HID loses connection with the bridge, it moves to reconnect mode to find the bridge. The
HID sends a connect request packet and listens for an AutoACK packet. If the HID receives the
AutoACK, it immediately enables its receiver and listens for the connect response packet from the
bridge. If the HID does not receive the AutoACK it selects the next channel using the channel selec-
tion algorithm and repeats this procedure. As shown in the reconnect timing diagram below, the
reconnect attempt takes approximately 1.76 ms/channel. The HID moves through its channel subset
up to 19 times before it times out and exits reconnect mode. The keyboard tries to send the data for
up to five seconds, and the mouse tries for two seconds, causing the HID to re-enter reconnect
mode multiple times if necessary.

Cycle 1 Cycle 2 Cycle 3

23.4 ms

Cycle 1000

23.4 ms x 1000 Cyles = 23.4 seconds

Bridge

Device

Channel 0 Channel 6 Channel 12 Channel 78

1.8 ms 1.8 ms 1.8 ms

1.80 ms x 13 Channels = 23.4 ms

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

4.16 s
4.16s x 5 Cycles ~ 21 seconds

Channel 0 Channel 6 Channel 12 Channel 72

320 ms 320 ms 320 ms

320 ms x 13 Channels ~ 4.16 seconds

Channel 78

Cycle 999

Channel 72
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 27

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_27

WirelessUSB™ Protocol 2.2
Figure 2-7. Reconnect Timing Diagram

2.5 Signature Byte
The PRoC LP RDK uses the Signature byte to determine if the HID has ever been bound to any
bridge before.

If the HID has never bound to a bridge, the non-volatile memory used to store the signature and the
bridge's MID data remains in its default value. Once the HID has bound to a bridge, the Signature
byte is set to 0x90 and the bridge's MID is also stored.

At power up, the HID reads the Signature and the MID bytes to determine its next action. If the Sig-
nature byte is 0x90, the HID uses the retrieved MID to calculate the networkID and moves to Re-
connect mode. If the Signature byte is not 0x90, the HID goes to sleep, waiting for the user to initiate
the bind process.

Reconnect
Mode

Reconnect
Mode

Reconnect
Mode

430 ms

Reconnect
Mode

Keyboard = 5 seconds; Mouse = 2 seconds

Inherence detected .
Move to a quieter

channel in the subset
Quiet channel found. Bridge will stay on this channel

Device lost connection .
Search for bridge in
the channel subset

Cycle 1 Cycle 2 Cycle 3 Cycle 19

22.88 ms
22.88 ms x 19 Cycles ~ 430 ms

1st Channel
in subset

2nd Channel
in subset

3th Channel
in subset

13th Channel
in subset

1.76 ms 1.76 ms 1.76 ms

1.76 ms x 13 Channels = 22.88 ms

Bridge

Device
28 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_28

WirelessUSB™ Protocol 2.2
2.6 Encryption
WirelessUSB PRoC LP RDK supports Tiny Encryption Algorithm (TEA) and Advanced Encryption
Standard (AES) 128 to encrypt application data. Data packets may be encrypted for privacy. All
encrypted data packets must have a payload of 8 or 16 bytes depending on the method chosen; this
is the minimum block size for the encryption algorithm.

2.6.1 TEA Encryption
Some of the features of TEA are:
■ 128-bit encryption key
■ 8-byte block size
■ Minimal RAM requirements
■ Small code size
■ Highly resistant to differential crypt analysis

In order to use the TEA algorithm both the bridge and HIDs must possess the data encryption key.
The bridge is responsible for creating the key, which is then shared with the HIDs. There are a vari-
ety of possible methods to share the key between the two devices. The key may be exchanged over
the WirelessUSB link using the encryption key request and encryption key response packets.

2.6.1.1 TEA Key Management over WirelessUSB

After binding and connecting to the bridge, the HID transmits an encryption key request packet and
listens for an AutoACK followed by an encryption key response packet that contains the first half of
the data encryption key. The HID then uses the key encryption key (calculated from the bridge and
the HID MIDs) to decrypt the data encryption key. The HID repeats this process for the second half
of the data encryption key and stores the key in Flash. After receiving both halves of the data encryp-
tion key the HID may begin transmitting encrypted data to the bridge.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 29

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_29

WirelessUSB™ Protocol 2.2
Figure 2-8. TEA Encryption Key Management

2.6.2 AES Encryption
AES_Encrypt requires the two variables tx_packet and AES_Key to be set prior to the call. Each
contains a 16 byte (128 bit) value. At the completion of the function tx_packet has been encrypted in-
place and contains the cipher text. AES_Key is scheduled in-place during the encryption process, so
multiple calls to AES_Encrypt will each need to be proceeded with reloading of AES_Key.

AES_Decrypt is the same as the AES_Encrypt; rx_packet and AES_Key both need to be loaded
prior to each call. However there is one small difference (because the decrypt key schedule is in
reverse order), the decryption key is not the same as the encryption key. The key used by
AES_Decrypt is the same as the key left in the AES_Key field after an execution of AES_Encrypt.
This is the key after it has gone through ten rounds of Key scheduling.
30 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_30

WirelessUSB™ Protocol 2.2
2.6.2.1 AES Key Management

The encrypt key is stored on the keyboard and the decrypt key is stored on the bridge during compil-
ing time. There is no dynamic encrypt key exchange in the running time.

2.6.3 Encryption and Power Consumption Trade Off
If the keyboard encryption is enabled, each key code is encrypted into an 8 byte key code (TEA) or
16 byte key code (AES). When a single key is pressed, a non-encrypted key down packet consists of
a 16-bit Preamble + 2 bytes SOP + 1 byte packet header + 1 byte key code + 2 bytes CRC; an
encrypted key down packet consists of the same overhead packets plus 8 or 16 byte key code
instead of one byte key code. This results in an increase in the average power consumption when
encryption is enabled.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 31

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_31

WirelessUSB™ Protocol 2.2
32 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_32

3. Mouse
3.1 Introduction
This section describes the design goals, architecture, firmware source code modules and configura-
tion options for the PRoC™ LP mouse. It does not cover the details of the radio subsystem or the
configuration options that go with it.

3.1.1 Design Features
The CY4672 Reference Design Kit uses a low cost PRoC LP for the RDK mouse (Cypress part num-
ber CYRF69103). Contact your local sales representative for more information.

The architecture was designed to be modular for extendibility and maintainability. It was also
designed so that it could easily be ported from one hardware platform to another assuming the use
of an equivalent microprocessor. Porting to another microprocessor family requires more work to
account for hardware specific changes.

Design efforts have been made to reduce the ‘on’ time of the microprocessor and radio to conserve
battery life. This includes protocol optimizations along with using sleep features of the PRoC LP and
optical sensor.

3.2 Hardware Overview
The mouse assembly, hardware block diagram, schematic, and hardware considerations are dis-
cussed in this section.

3.2.1 RDK Mouse Assembly
The PRoC LP RDK mouse is currently enclosed in a skin that has been designed for the Avago
ADNS-3040 Ultra Low-Power mouse sensor. The mouse features three buttons with one button
combined with the scroll wheel function. There is a connect button on the bottom of the mouse allow-
ing the user to perform an explicit bind with the bridge.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 33

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_33

Mouse
Figure 3-1. Bottom View Bind Button and On-Off Switch

Figure 3-1 shows the bottom of the mouse with the optics window, power switch, and Bind button.
There are two screw holes above the label. The top of the mouse can be removed once these two
screws on the bottom and one screw on the top have been extracted.

Figure 3-2. Exploded Mouse View

Figure 3-2 is a picture of the mouse with the top removed. The mouse consists of a single PCB that
contains all of the necessary mouse components.

34 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_34

Mouse
3.2.2 Hardware Block Diagram

Figure 3-3. Mouse Hardware Block Diagram

3.2.3 Schematics
All schematics for the optical wireless mouse are located in the following directory: <installation
directory>\Hardware\Mouse. The schematic is in Adobe Acrobat format with the letters ‘Sch’ in the
file name.

Figure 3-4. Printed Circuit Assembly (PDC-9347)

Figure 3-4 is a picture of the controller board with the PRoC LP and optical sensor. The ‘wiggle’ trace
in the upper left is the antenna. This board has the option of adding pull up resistors and filtering
capacitors to the z-wheel and then powering the z-wheel with a separate GPIO pin on the microcon-
troller. J10 is a programming header. Either the ICE-Cube or the PSoC MiniProg may be used to pro-
gram the mouse microcontroller using this ISSP header. J10’s pin 1 is a double header as a
mechanism to isolate the programming voltage and the operating voltage. To enter a manufacturing

PRoC Optical sensor

SPI

O_nCS
Scroll Wheel

Buttons

O_ Motion
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 35

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_35

Mouse
test mode that is compatible with the Cypress Manufacturing Test Kit, use a shorting block and short
together pins 4 and 5 before power is applied.

3.2.4 Hardware Considerations
The mouse design uses the SS12 schottky diode (D1) and CDH53100LC inductor (L3) for its boost
circuitry. With these high efficiency components, preliminary characterization data shows a range of
approximately 74-87% efficiency for the 1.8-2.7V VBAT voltage range at different temperatures
(-10C to 80C). The mouse is a higher power consumption device compared to the keyboard. Extend-
ing the battery life is one of the crucial design considerations in the mouse design. The trade off for a
higher efficiency boost circuitry is the component costs and the board size (these components are
slightly bigger in size compared to the ones used in the keyboard design). These components do not
provide enough current capacity at the low end of the VBAT voltage range to handle the worst case
optical sensor load and the PMU output voltage may droop under these conditions. The recommen-
dation is to use an external DC/DC boost circuit for the optical system only.

3.3 Firmware Architecture
There are two architectural views of the mouse. The first is a microcontroller configuration view. This
architecture and configuration is best viewed in the PSoC Designer™ application when the project is
loaded. The second view is a logical organization of the source code modules that make up the
mouse application code and other support modules.

This section describes both architectures with emphasis on top level organization and overall mod-
ule operation. More detailed description of variables and functions should be obtained by studying
the source code.

3.3.1 ROM/RAM Usage
The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options below. The bottom part exhibits the ROM/RAM
usage for individual build options.

3.3.2 PRoC LP Device Configuration
The PRoC LP Programmable Radio on Chip is configured using the Device Editor in PSoC
Designer. The mouse uses 2 digital blocks to support two separate user modules. The first module is
an SPI master for communicating with the optical sensor and the radio. The second module is a Pro-
grammable Interval Timer configured to operate as a 12-bit timer. The following is a screen shot of

Table 3-1. ROM/RAM Usage

Total ROM (Bytes) Total RAM (Bytes)

Basic Function 5334 70

Build Option ROM Usage (Bytes) RAM Usage (Bytes)

MOUSE_BATTERY_STATUS 255 2

MOUSE_TEST_MODE 537 0

MFG_TEST_CODE 530 0

MFG_TX_MODES 755 2
36 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_36

Mouse
the Device Editor showing the user module mapping. Further description of resources and user
modules follow the diagram.

Figure 3-5. CYRF69103 Device Architecture
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 37

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_37

Mouse
3.3.2.1 Global Configuration

Following is a description of the Global Resources that are configured for the CYRF69103 PRoC
LP Programmable Radio on Chip. Care must be taken when modifying these values as they affect
the user modules discussed below.

3.3.2.1.1 CPU Clock

This parameter is set to Internal (24 MHz). In order to run the CPU at 12 MHz, CPU Clock/N needs
to be set to ‘2’. This operating frequency provides for faster code execution so that when events are
detected the microcontroller can be put back into the sleep state quicker for improved power sav-
ings.

3.3.2.1.2 CPU Clock / N

This parameter is set to ‘2’ to provide a 12 MHz clock.

3.3.2.1.3 Timer Clock

This parameter is set to FreeRun Timer.

3.3.2.1.4 Timer Clock /N

This parameter is set to ‘4’.

3.3.2.1.5 FreeRun Timer

This parameter is set to Low Power (32 kHz).

3.3.2.1.6 FreeRun Timer /N

This parameter is set to ‘6’.

3.3.2.1.7 Capture Edge

This parameter is set to Latest.

3.3.2.1.8 8 Bit Capture Prescaler

This parameter is set to ‘1’.

3.3.2.1.9 CLKOUT Source

This parameter is set to Internal (24 MHz).

3.3.2.1.10 Low V Detect

This parameter is set to 2.63V–2.68V.

3.3.2.1.11 V Reset

This parameter is set to 2.6V.

3.3.2.1.12 Watchdog Enable

This parameter should be set to Enable, but may be set to Disable for debug purposes.

3.3.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with both the radio transceiver and the optical
sensor. Both devices support leading edge data latching, non-inverted clock and MSB first transmis-
sion as defaults. A clock divisor of 12 is chosen which generates an SPI clock of 1 MHz. The inter-
38 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_38

Mouse
rupt API to this module is not used. See the SPI Module on page 40 for how this module is used to
implement communication with multiple devices on the SPI bus.

3.3.2.3 Programmable Interval Timer User Module

The Programmable Interval Timer User Module is configured to use the Internal 32-KHz Low-power
Oscillator. This module is used to provide a periodic interrupt to the timer code module in order to
maintain a power saving millisecond sleep routine. The period of the timer is calibrated to the system
clock at power on in order to provide a period of about 250 µs. This calibration is performed to
account for variations in temperature and ILO variances from part to part. Configured the module to
generate a terminal count interrupt. The period parameter is ignored since it is programmed at run
time based upon the calibration results. See the Timer Module on page 41 for more details on cali-
bration

3.3.2.4 Flash Security

The PSoC Designer mouse project has a file called FlashSecurity.txt. This file specifies access rules
to blocks of the Flash ROM. Refer to the documentation at the top of the file for definitions. This file
is shipped with a single change from its default configuration. The block starting at hex address
1FC0 has been changed from W: Full (Write protected) to U: Unprotected. This location of Flash has
been dedicated to saving non-volatile configuration values for the protocol code module (refer to the
Protocol Module on page 41). Note When building the mouse firmware, be sure to check that the
text image size does not occupy this block.

3.3.3 Model

Figure 3-6. Firmware Architecture Model

debounce spi

flash radio driver

protocol

poll

timer

isr

mouse optical

testmode

mfgtest

battery

buttons

wheeltick

GPIO

Common

PSoC Lib

Application
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 39

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_39

Mouse
The mouse firmware is partitioned into two logical groups. The Common group is a collection of code
modules that provide the underlying support for the application. This group provides services such
as radio protocol, radio driver, timing, polling, flash access, contact debounce, SPI, and interrupts.

The Application group implements the core functionality and features of the PRoC LP RDK mouse.
This includes power management, optical sensor, button, z-wheel, packet formatting and reporting,
various test modes and battery level sensing. The code modules for each of these groups are
described below in further detail.

All of the following module descriptions have corresponding <module name>.c or <module
name>.asm and <module name>.h source code files. The module API and definitions are exported
in the header file while the module implementation and local definitions are contained in the C/
assembly file.

3.3.4 Common Code
The modules in the common code group are a combination of two sources. The first is PSoC
Designer generated files in the lib directory that have been modified to support the application. The
second group is modules that are generally used by the application.

3.3.4.1 Generated Library Code

There is currently only one file, generated by PSoC Designer, that is modified for the use of the
application. A minimal amount of code has been added to this module in user protected areas that
are preserved across code generation.

3.3.4.1.1 Timer Interrupt Module

The timer interrupt module has been modified to provide a finer timing of 250 µs for the Poll Module
and course timing by providing a 1 ms tick. When the timer module has been turned off, it still pro-
vides a sense of time on the 1 ms tick by using the sleep timer. In this case polling is disabled to con-
serve power. See the Poll Module on page 41 and the Timer Module on page 41 for more details.

3.3.4.2 Debounce Module

The debounce module is an assembly coded routine to perform debounce on button presses as well
as z-wheel motion. The algorithm is one that was published in EDN article as a way to perform hard-
ware debounce in software.

The debounce is performed by polling the inputs at a fixed period and by adding a weighted value of
the input to an accumulated value carried from the previous poll. The output is then passed to
threshold logic, with built in hysteresis, and a logic value of one or zero is computed. The thresholds
can be changed to adjust the hysteresis crossings by setting SCHMITT_HIGH_THRESH and
SCHMITT_LOW_THRESH. Once an input has changed state, the output can be observed to
change approximately 10x the poll period later with the current threshold settings. With a poll period
of 250 µs the input latency is about 2.5 ms.

Refer to Contact-debouncing algorithm emulates Schmitt trigger at http://www.edn.com for more
details on the operation of this algorithm.

3.3.4.3 SPI Module

This module provides an interface to the SPI bus for the optical sensor only. Physically the SPI bus is
connected to the radio and the optical sensor. The radio driver is responsible for interfacing with the
radio. The PRoC LP SPI Master module does not manage the selection of slave devices. This mod-
ule was created to provide that functionality. This module has a dependency on the instantiation of a
SPIM module in PSoC Designer that is properly connected to the devices.
40 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_40

Mouse
In the PRoC RDK mouse design, the master SPI communicates with both the radio and optical sen-
sor. Because the optical sensor does not supports 3-wire SPI mode, the 4-wire mode is employed. In
order to save the GPIO pin, the IRQ pin function is multiplexed onto the MOSI pin.

3.3.4.4 Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the PRoC LP Radio Driver documentation for
details.

3.3.4.5 Protocol Module

The protocol module defines and implements the layer used to deliver packets from the device to the
bridge. It manages the binding of devices to a bridge as well as the connection and interference
immunity by channel hopping. This module has a dependency on the Radio Driver for sending for-
matted packets and the flash module for storing the manufacturing ID of the bridge the device is
bound to.

3.3.4.6 Flash Module

The flash module is a smaller version of E2PROM module provided in PSoC Designer. It is limited in
functionality and only implements the read/write routines required by the device. The flashsecurity.txt
file must be modified so that the block being modified by this module is given read/write privilege,
such as unprotected. Currently the very top most block in flash is used for this module.

3.3.4.7 Port Module

GPIO pins on the PRoC LP ports can be configured as outputs with a pull up resistor. This is the
case for mouse buttons and the Bind button. In order to activate the pull up, a data value of one must
be written to the port data latch for the pin. This feature presents a problem when performing a read-
modify-write on the port. For example, if a button is pressed (grounding the pin), a zero is read and
written back out on the read-modify-write operation. This turns off the pull up for the button thereby,
essentially disables the button. The port module provides an interface to treat ports, using the pull up
feature, in a special way by caching the drive data for the port.

3.3.4.8 Poll Module

The poll module manages the timing, enabling/disabling and polling of the mouse buttons and z-
wheel inputs. When the mouse is active, polling is enabled and occurs at a rate of about 250 µs for
the z-wheel (see the Timer Module) and a rate of about 3 ms for the mouse buttons. When the
mouse is inactive, the buttons are changed to interrupt mode and the z-wheel is polled for change
only when the sleep timer expires; see the Buttons Module and Wheel Module on page 44.

3.3.4.9 Timer Module

The PRoC LP has an internal low power oscillator (ILO) that is used for generating a clock to a Pro-
grammable Interval Timer. This clock is affected by voltage and temperature and may drift over time.
This module provides an interface to calibrate this clock to the system clock. The Programmable
Interval Timer period is calibrated to be approximately 250 µs. Be especially careful when changing
this period since the poll/debounce modules are coupled to this time value; see Poll Module and the
Debounce Module on page 40.

The timer module also provides a set of functions for performing busy waits in the microsecond res-
olution. For more coarse timing requirements, an API is provided for millisecond delays. The milli-
second delay routines must be used as often as possible to provide for better power consumption
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 41

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_41

Mouse
since the microcontroller sleep feature is used. Also, when polling is enabled, it is performed as a
background task during the millisecond delay.

This module also adjusts the tick advancement based upon the sleep resolution. Turning off the
timer provides for more power savings, yet a sense of time is still preserved for non-critical timing.

Note When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of
the sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to synchro-
nization issues between the OCD part and the emulator.

3.3.4.10 ISR Module

This module provides an interface to initialize the interrupt.

3.3.5 Application Code
The group of modules that make up the application code are responsible for implementing the
mouse functionality and behavior. Following is a high level description of each module responsibility
and associated algorithms.

3.3.5.1 Mouse Module

The mouse module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the mouse. The data formats and reporting algo-
rithms along with power management are explained in this section.

A few format types are defined to support the operation of the mouse. One of these is the packet for-
mat used when sending data to the bridge. This type is defined as TX_PACKET and is structured to
support the different data packet formats as explained in the section Wireless Protocol Data Payload
on page 47. The present definition combines z-wheel data with button data into one byte in order to
conserve battery power by shortening the ‘on time’ of the radio. This format needs to change in order
to support a mouse with more than three buttons and a z-wheel, perhaps sending four bytes instead
of three.

The function main() is the entry point for the mouse application. This function is called from the
boot.asm file. The mouse first initializes all of the application modules and then initializes the proto-
col module; see Protocol Module on page 41. There is an order dependency for some of these, so
care must be taken in modifying the mouse_init() function. For example, other modules depend upon
the timer facility running in order to perform initialization. The spi module must be initialized before
the optical and protocol modules can be initialized; see SPI Module on page 40, Optical Module on
page 43 and Protocol Module on page 41. Once each module has been initialized, then the applica-
tion checks for entry to the ‘LP’ draw test mode or the manufacturing test mode. If neither of the test
modes is indicated, then normal mouse operation begins.

The mouse module handles a variety of events at the main thread level. Most interrupt routines post
notification that an event occurred by using the macros provided by the mouse interface. The mouse
then processes these events at thread context rather than interrupt context.

The mouse application is implemented using a state machine to manage the various power modes
that it executes at any given time.

The mouse initially enters a disconnected state. When there is any mouse activity, it enters the
active state.

In the active state the timer is turned on so that more accurate timing and mouse events can be col-
lected, formatted and reported to the bridge. The mouse remains in this state as long as there is
mouse activity to report to the bridge or a period of time without any mouse activity has expired, after
42 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_42

Mouse
which it returns to the idle state. If the mouse is unable to deliver a packet while in this state, it transi-
tions to the disconnected state.

In idle state the optical sensor is allowed to transition through its various rest modes to conserve
power. In this state, the mouse application is waiting for input from the optical sensor, z-wheel or but-
tons. The timer is turned off to conserve power and the notion of time is maintained using the sleep
timer. This state is maintained indefinitely until the batteries drop below 1.8 volts at which point the
mouse enters the off state.

The off state is where the radio and optical sensor are prevented from turning on. This state is
reached when the battery voltage drops below 1.8 volts. It is designed to keep the battery drain to an
absolute minimum to prevent battery leakage as a result of completely draining the batteries.

The battery level is reported by the mouse application when it detects a change from the discon-
nected state to the connected state. The battery level is measured when exiting the idle state. If
there is a change in the battery level, it will be reported in the active state.

In the active state the mouse attempts to deliver a packet for the amount of time designated in
MOUSE_TX_TIMEOUT_MS. If it is unable to send the packet in this time, then it transitions to the
disconnected state.

The mouse application is responsible for detecting the Bind button press and then calling the bind
function in the protocol module; see Protocol Module on page 41.

The mouse application sends mouse reports as frequently as events arrive, but not any faster than
the time defined in the macro MOUSE_REPORT_IN_MS. Carefully set this time so that the report
rate does not exceed that which the USB bus is capable of handling. Keep in mind that the report
rate varies slightly due to drift of the internal oscillator used to keep track of time.

3.3.5.2 Optical Module

The optical sensor module encapsulates the initialization, calibration and reading of the optical sen-
sor. This module also handles any power management required by the sensor, along with motion
detection if supported. The contents of this module potentially change with every design and are
unique to the sensor used.

This module has the responsibility to format the X and Y data into the mouse packet payload. Refer
to section Wireless Protocol Data Payload on page 47 for a definition of the packet payload.

3.3.5.3 Testmode Module

The Testmode module provides code to continuously perform a vector drawing test within a drawing
application. This test mode is used to check radio range, co-location and interoperability of the
mouse with the keyboard.

The test mode, when compiled in, is entered by holding down the left and right button while inserting
the batteries. The buttons must be held down until the optical sensor begins to flash. As soon as the
buttons are released the mouse repeatedly draws ‘LP’ in the drawing application. Each successive
‘LP’ must be drawn on top of the previous one. The test mode may only be exited by removing the
batteries. All button presses and mouse movement are ignored when in the test mode. However,
care must be taken not to bump other mice connected to the PC.

Note The mouse ‘acceleration’ or ‘enhance pointer precision’ option needs to be turned off in the
Windows mouse Control Panel for this test to execute properly. If the letters are drawn erratically
with uneven sides or excessive amounts of space in between them, then check this setting or its
equivalent (based upon your PC operating system).

When the macro DEBUG_INDEX is defined, code is generated to move the mouse pointer to the
right and back again without the pen down. This is done in an incrementing fashion so that when
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 43

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_43

Mouse
observing packet data on a Listener, a correlation can be made with a USB protocol analyzer. This is
useful for debugging data loss since the test mode guarantees packet delivery.

Entry to this test mode can be changed by modifying the macro TESTMODE_BUTTONS in the test-
mode.c file. The button macros are defined in the buttons.h file.

3.3.5.4 Buttons Module

The buttons module provides an API for handling both the bind and mouse buttons. This module
must be changed when adding or removing buttons for a new mouse design. The button portion of
the packet payload is formatted by this module and needs to change if more buttons are added. See
the Mouse Module on page 42 module for a definition of the packet payload format.

This module manages power configurations that may be implemented to conserve power related to
button presses. For example, button polling is turned off and interrupts are used to detect button
presses in the idle state. It also manages the acquisition of button information depending on the
implementation: interrupts or polling.

When changes in a button state are detected, the mouse module is notified for collection and report-
ing of the data. Note It is important for the buttons module to always report the button state when a
button is pressed. This condition frequently occurs when the mouse is moved with the button held
down.

3.3.5.5 Mfgtest Module

The manufacturing test module may be optionally compiled in, at the expense of code space, by
defining the macro MFG_TEST_CODE. In addition, a more complete version may be compiled in by
defining MFG_TX_MODES. The TX modes include code to perform a carrier test as well as a ran-
dom data test.

The manufacturing test code is designed to be compatible with the CY3631 Manufacturing Test Kit
Tester. Entry into this mode on the mouse is performed by placing a shorting block over pins four and
five of the ISSP programming header and then inserting the batteries. The test mode may only be
exited by removing the batteries and shorting block. For more information on how to use this test
mode, refer to the CY3631 Manufacturing Test Kit documentation.

It is recommended that you not make changes to this module unless similar changes are made to
the CY3631 Tester.

3.3.5.6 Wheel Module

The wheel module implements the functionality of the z-wheel. It is responsible for power modes
associated with the z-wheel, polling, z-wheel interrupts, wheel position tracking, and partial packet
formatting for z-wheel reports.

When the z-wheel is being polled, the GPIO pins are turned on with internal pull up resistors just
long enough to read the state. This is done to conserve power when the mouse is active. When the
polling timer has been turned off the wheel_poll_sleep() function is called which only looks for
change from the last state; it does not keep track of wheel position.

Z-wheel position tracking is done by comparing debounced wheel input to the previous two states.
Depending upon the wheel input phase transition the direction of the wheel can be determined. The
poll rate must be frequent enough to debounce and catch these transitions for a smooth response.
The RDK mouse is shipped with a mechanical encoder. It is typical for this decoder to rest on a
detent such that the z-wheel inputs are either both high or both low, hence the reason for only turning
on the pull ups when polling the input. Transition from one of these states to the other is reported as
a +/-1 motion. Note Sometimes the mechanical detents do not align with the high-high or low-low
state and movement may not be seen every time from detent to detent.
44 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_44

Mouse
When z-wheel motion is detected, the mouse module is notified for collection and reporting of the
data; see Mouse Module on page 42.

3.3.5.7 Battery Module

The battery monitor circuit is implemented using the Low Voltage Interrupt (LVI) on the LP radio. Fol-
lowing is an explanation of the process to measure the battery voltage.

The process first sets the LVI threshold to 1.8V and then checks for an LVI interrupt. If the interrupt
does not occur then it repeatedly sets the LVI TH and PMU OUTV with the following combination
and checks the status.

It then returns a battery level between 1 and 10: 1 being below 1.8V and 10 being above 2.7 volts.

3.3.6 Configuration Options
All configuration options for the application can be found in the config.h file, and some of them are
defined in the Project > Setting > Compiler > Macro defines. Each option is explained below and can
be changed to values that meet the developer’s needs.

3.3.6.1 MOUSE_REPORT_IN_MS

This configuration value sets the shortest period at which the firmware honors events from the
mouse hardware to transmit using the radio. The default value is approximately 10 milliseconds. Set-
ting this value to something smaller than the USB poll period of 8 milliseconds generates excessive
radio retries from the mouse and is not recommended. Larger values improve battery life, but may
affect usability of the mouse. See the Timer Module on page 41 for a description of timing accuracy.
This valued is defined in milliseconds.

3.3.6.2 MOUSE_ACTIVE_MS

This value sets how long the timer module runs generating poll interrupts for the z-wheel and but-
tons. This time affects power consumption of the mouse. Once this time expires, the buttons and z-
wheel go into a power down state, improving battery life. In power down state, z-wheel movement
exhibits latency. See the Buttons Module and Wheel Module on page 44 for descriptions of power
down states and operation. This value is defined in milliseconds.

3.3.6.3 MOUSE_DISCONNECTED_POLL_MS

Sets the rate at which the battery voltage is monitored while in the disconnected state. This ensures
that if the batteries go below the minimum battery voltage of 1.8 V, the radio and optical sensor are
prevented from turning on.

3.3.6.4 MOUSE_TX_TIMEOUT_MS

The transmit loop in the mouse attempts to guarantee delivery of mouse events. This loop eventually
times out if it does not receive a response from the bridge. This value sets that time-out time. The
default value is 2000. This value is defined in milliseconds.

Table 3-2. LVI TH and PMU OUTV Combinations

LVI TH PMU OUTV VOLTAGE IF INTERRUPT OCCURS
1.8V 2.7V < 1.8V

2.0V 2.7V < 2.0V

2.2V 2.7V < 2.2V

PMU OUTV 2.7V < 2.7V
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 45

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_45

Mouse
3.3.6.5 MOUSE_CONNECT_ATTEMPT_TIMES

This value sets the attempt times for the mouse trying to connect to the bridge before entering the
Briefcase Mode. The default value is 20.

3.3.6.6 PLATFORM_H

This configuration value identifies the header file that has the platform configuration information. The
default value is pdc9347.h, which is the identifier for the mouse board that is shipped with the RDK.
This macro changes when the code is ported to another platform.

3.3.6.7 MOUSE_800_NOT_400_CPI

This configuration definition is used to select between 800 or 400 counts per inch (cpi) when config-
uring the optical chip. If it is defined then 800 cpi is selected. If it not defined then 400 cpi is selected.
The default is 800 cpi.

3.3.6.8 MOUSE_BATTERY_STATUS

Enabling this feature causes the battery level measurement code to be compiled into the mouse
image. The mouse then measures the battery level and reports any changes to the bridge. Notifica-
tion of the battery level is done at the following events: the battery level changes, the mouse transi-
tions from the idle state to the active state, mouse transitions from the disconnected state to the
connected state.

3.3.6.9 MOUSE_TEST_MODE

This configuration definition is used to selectively compile code for mouse test mode. If this value is
defined, then the test mode is compiled into the executable image.

The test mode moves the mouse in a fashion to repeatedly draw the letters ‘LP’ in a drawing pro-
gram. When performing this test, turn off Mouse acceleration or advanced motion. See the Testmode
Module on page 43 for more information on entering this test mode.

3.3.6.10 MFG_TEST_CODE

This configuration definition is used to selectively compile in the manufacturing test code. The man-
ufacturing test code in this mouse is compatible with the CY3631 Manufacturing Test Kit offered by
Cypress Semiconductor. See Mfgtest Module on page 44 for a description of how this test mode is
executed. See the CY3631 Manufacturing Test Kit documentation for a description of the test opera-
tion.

3.3.6.11 MFG_TX_MODES

When the MFG_TEST_CODE is defined, then the definition of this name adds in a carrier and ran-
dom data TX test option. See Mfgtest Module on page 44 for more information on these TX modes.

3.3.6.12 MASTER_PROTOCOL

This configuration definition is used to select the Master radio protocol or Slave radio protocol. For
the mouse application, it should be undefined.

3.3.6.13 PAYLOAD_LENGTH

This configuration definition is used to define the payload length. For the mouse application, it should
be defined as 3.
46 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_46

Mouse
3.3.6.14 KISS_BIND

This configuration definition is used to selectively compile in the Enhanced KissBind feature. See
Enhanced KISSBind™ on page 18 for a description of Enhanced KissBind.

The mouse can be un-bound by holding the right and middle buttons, and pressing the Bind button.
After being un-bound, the mouse will enter an infinite loop until a POR.

After being un-bound, the mouse can be bound to a bridge by KissBind.

3.3.6.15 RSSI_QUALIFY

This configuration definition is used to enable the RSSI qualification for the Enhanced KissBind.
Only if the RSSI reading is above KISS_BIND_RSSI_THRESHOLD, can the KissBind request/
response be accepted by the Bridge/Devices.

3.3.6.16 AUTO_CONNECT

When the bridge is absent, after MOUSE_CONNECT_ATTEMPT_TIMES times of attempts to con-
nect to the bridge, the mouse enters the Briefcase Mode. In this mode, the mouse shuts down the
sensor to save power.

When the mouse enters the Briefcase Mode, if the AUTO_CONNECT is defined, the mouse tries to
connect to the bridge automatically every MOUSE_DISCONNECTED_POLL_MS seconds. If the
AUTO_CONNECT is not defined, the mouse tries to connect to the bridge only when the buttons are
pressed.

3.3.7 Platform and Architecture Portability
The mouse firmware was designed to be easily ported from one hardware platform to another plat-
form with a simple re-mapping of pins on the PRoC LP. The file pdc9347.h maintains the pin map-
ping definitions that are used throughout the code and is included in about every file by using the
macro PLATFORM_H that is defined in config.h.

Porting the code to another microprocessor architecture requires modification or leverage of the
existing code for processor specific features, along with pin definitions.

3.3.8 Initialization
Initialization of the PRoC LP chip is done by code that is generated in boot.asm by the PSoC
Designer software. The module boot.asm calls main() in the mouse module once the Wireless PRoC
LP has been configured and initialized; see Mouse Module on page 42.

3.3.9 Wireless Protocol Data Payload
The mouse protocol has been optimized to reduce the ‘on-time’ of the radio, which equates to
reduced power consumption. This optimization relies upon the PRoC LP RDK requirement of a
three-button mouse. With this requirement, it is possible to combine the z-wheel and the button
report into a single byte, allowing five bits of information for the z-wheel and three bits for the but-
tons.

The protocol code module offers the ability to send variable length packets, thereby allowing a
reduced number of bytes to be transmitted over the air, in order to extend battery life.

Since mouse usage data demonstrates that X, Y optical sensor data is more frequent than z-wheel
or button presses, the following transmission packet formats are implemented in this RDK. The
packet formats only show the application payload and do not show the protocol packet format.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 47

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_47

Mouse
3.3.9.1 Packet Format 1

When there is only X, Y delta data, the transmitted packet is two bytes.

3.3.9.2 Packet Format 2

When there is either z-wheel data or button data, then the transmitted packet is three bytes. In the
case where there is no X, Y delta data, but there is z-wheel or button data, the X, Y delta bytes are
set to zero. The z-wheel data is a signed value with bit 4 as the sign bit.

3.3.9.3 Packet Format 3

When battery voltage level is communicated, the transmitted packet is 1 byte.

3.3.10 Interrupt usage and timing
In the RDK mouse, the following interrupts has been enabled:
■ Motion interrupt from the optical sensor
■ Button (Left, Middle and Right buttons) interrupt
■ Bind button interrupt

The interrupt latency includes two portions. The first portion is the time between the assertion of an
enabled interrupt and the start of its ISR, which can be calculated using the following equation:

Latency1 = Time for current instruction to finish +
Time for M8C to change program counter to interrupt address +
Time for LJMP instruction in interrupt table to execute.

For example, if the 5-cycle JMP instruction is executing when an interrupt becomes active, the total
number of CPU clock cycles before the ISR begins are as follows:

(1 to 5 cycles for JMP to finish) +
(13 cycles for interrupt routine) +
(7 cycles for LJMP) = 21 to 25 cycles.

In the example above, at 12 MHz, 25 clock cycles take 2.083 µs.

Table 3-3. Packet Format 1

Byte 1 Byte 2
X Delta
(8 bits)

Y Delta
(8 bits)

Table 3-4. Packet Format 2

Byte 1 Byte 2 Byte 3
X Delta
(8 bits)

Y Delta
(8 bits)

Buttons (Bits[7:5]),
Z Delta (Bits[4:0])

Table 3-5. Packet Format 3

Byte 1
Battery Level
(1 – 10)
48 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_48

Mouse
The second portion is the time between the start of the ISR and the post of the event flag. For exam-
ple, the motion interrupt takes 23 CPU clock cycles for this portion. Therefore, the Latency2 equals
to 1.917 µs for the 12 MHz CPU.

Consequently, the total latency for a motion interrupt is:

Latency1 + Latency2 = 4 µs

3.3.11 Code Performance Analysis
A mouse motion report is used to analyze the code performance. A typical mouse motion report con-
tains the following steps:
■ Optical sensor responds to a mouse motion. With the mouse the sensor in the rest 1 state, it

takes 16.5 ms for the sensor to responds to this sensor motion.
■ The sensor interrupts the MCU by lowering its motion pin. The prior section has calculated that it

takes 4 µs for MCU to respond to this Interrupt.
■ In the function timer_wait_event(), the MCU exits the sleep state and spends 53 µs to finish the

wheel poll.
■ Firmware delays MOUSE_REPORT_IN_MS, which is 10 ms for the default. This delay is to pre-

vent excessive radio retries from the mouse.
■ Firmware calls function mouse_do_report() to read the Delta_X and Delta_Y value and send the

packet to the bridge. This step takes 1.98 ms, which includes 1.66 ms radio transmission time.

As a result, if a mouse is in the rest 1 state, it takes 28.6 ms for the mouse to report a motion to a
bridge.

3.4 Development Environment

3.4.1 Tools
See the CY4672 Getting Started Guide for a list of tools required to build and debug the mouse
application.

Figure 3-7. Pod Used for Debugging RDK Mouse
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 49

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_49

Mouse
3.4.2 Tips and Tricks
A couple of ways for working with the kit are the following.

3.4.2.1 M8C Sleep

When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of the
sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to synchroni-
zation issues between the OCD part and the emulator.

3.4.2.2 Watchdog Timer

The watchdog timer is enabled for the RDK operation, but may be disabled for debug purposes.

3.4.3 Critical Test Points
The following figure shows the critical test points for RDK mouse.

Figure 3-8. RDK Mouse Critical Test Points
50 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_50

4. Keyboard
4.1 Introduction
This section covers the design goals, architecture, firmware source code modules and configuration
options for the PRoC™ LP keyboard. It does not cover the details of the radio subsystem or the con-
figuration options that go with it.

4.1.1 Design Features
There are several design goals that drove the requirements for the firmware development for the
keyboard. Some of these are architecture related, while others are feature related.

The CY4672 Reference Design Kit uses a enCoRe II LV controller and CYRF6936 LP Radio for the
RDK keyboard. Contact your local sales representative for more information on the enCoRe II LV
controller.

The architecture was designed to be modular for extendibility and maintainability. It was also
designed so that it could easily be ported from one hardware platform to another assuming the use
of a enCoRe II LV microprocessor. While porting to another microprocessor requires more work, the
hardware design was done to minimize usage of advanced enCoRe II LV features to expedite this
effort.

Design efforts have been made to reduce the ‘on time’ of the microprocessor and radio to conserve
battery life. This includes protocol optimizations along with using sleep features of the radio and
enCoRe II LV microprocessor.

4.2 Hardware Overview
The keyboard components are presented in this section. Photographs of the RDK keyboard assem-
bly, are used to point out specific components or buttons.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 51

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_51

Keyboard
4.2.1 RDK Keyboard Assembly

Figure 4-1. Keyboard Plastic

Figure 4-1 shows the RDK keyboard plastic.

Figure 4-2. Exploded Keyboard

Figure 4-2 shows the keyboard with the top removed. The radio/enCoRe II LV board (PDC-9265) is
shown in the upper right hand corner.
52 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_52

Keyboard
Figure 4-3. Radio and PSoC Board (PDC-9265)

Figure 4-3 shows the main controller board with the enCoRe II LV and WirelessUSB™ LP Radio. All
of the components are on the top side of the board with the exception of the Bind button.

Figure 4-4. Keyboard Battery Compartment

Figure 4-4 shows the integrated battery compartment located on the bottom side of the keyboard.
The battery compartment cover is also shown.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 53

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_53

Keyboard
Figure 4-5. Bind Button

Figure 4-5 shows the Bind button.

4.2.2 Schematic
All schematics for the PRoC LP RDK keyboard are located in the following directory: <installa-
tion directory>\Hardware\Keyboard. The schematic is in Adobe Acrobat format with the let-
ters ‘Sch’ in the file name.
54 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_54

Keyboard
4.2.3 Keyboard Matrix
The PRoC LP RDK keyboard matrix has 18 columns and 8 rows. Key presses generate a GPIO
interrupt when a column is connected (shorted) to a row. The keyboard then scans the matrix to
determine which keys have been pressed.

The RDK keyboard matrix with the USB scan codes are shown in Table 4-1.

Notes:
 Yellow indicates Multimedia Key (16-bit value)
 Red indicates Power Key
 Blue indicates Modifier Key
 No color indicates a Standard 101 Key

4.2.4 Hardware Considerations
The keyboard design uses the BAT400D-7-F schottky diode (D1) and CDH53100LC inductor (L3) for
its boost circuitry. These low cost components are used to reduce the over all system cost at the
expense of lower boost efficiency and performance. Preliminary characterization data shows a range
of 68–81% efficiency for the 1.8–2.7V VBAT voltage range at different temperatures (–10C to 80C).
Higher efficiency components such as the ones in the mouse design may be used at the expense of
component costs and board size (these low cost components are smaller in size compared to the
ones used in the mouse design).

Table 4-1. RDK Keyboard Matrix

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Column 0 0x09 0x0A 0x19 0x05 0x17 0x15 0x21 0x22

Column 1 0x0D 0x0B 0x10 0x11 0x1C 0x18 0x24 0x23

Column 2 0x0E 0x3F 0x36 NA 0x30 0x0C 0x25 0x2E

Column 3 0x0F NA 0x37 NA 0x40 0x12 0x26 0x41

Column 4 0x33 0x34 NA 0x38 0x2F 0x13 0x27 0x2D

Column 5 0x31 0x3E 0x28 0x2C 0x2A NA 0x43 0x42

Column 6 0x5A 0x62 0x54 0x4F 0x5D 0x60 0x45 0x49

Column 7 0x59 NA 0x53 0x51 0x5C 0x5F 0x44 0x4C

Column 8 0x5B 0x63 0x55 0x56 0x5E 0x61 0x4E 0x4B

Column 9 0x07 0x3D 0x06 NA 0x3C 0x08 0x20 0x3B

Column 10 0x16 NA 0x1B NA 0x39 0x1A 0x1F 0x3A

Column 11 0x04 0x29 0x1D NA 0x2B 0x14 0x1E 0x35

Column 12 0x58 0x52 0x48 0x50 NA 0x57 0x4D 0x4A

Column 13 NA 0x04 NA 0x40 0x0192 0x47 0x46 0x0223

Column 14 0x02 0x00CD 0x20 NA 0x02 NA 0x0221 0x018A

Column 15 NA NA 0x10 NA 0x00E9 NA NA 0x01

Column 16 0x7D 0x00E2 0x80 0x7C 0x00B7 0x00EA 0x022A NA

Column 17 0x08 0x0225 NA 0x7B 0x0224 0x65 0x00B6 0x00B5
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 55

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_55

Keyboard
4.3 Firmware Architecture
There are two architectural views of the keyboard. The first is a microcontroller configuration view of
user modules. This architecture and configuration is best viewed in the PSoC Designer™ application
when the project is loaded. The second view is a logical organization of the source code modules
that make up the keyboard application code and other support modules.

The next few sections describe both architectures with emphasis on top level organization and over-
all module operation. More detailed description of variables and functions may be obtained by refer-
encing the source code.

4.3.1 ROM/RAM usage
The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options below. The bottom part exhibits the ROM/RAM
usage for individual build options.

*The ENCRYPT_TEA option needs 64 bytes extra Flash space to store the non-volatile session key.

4.3.2 enCoRe II Device Configuration
The enCoRe II LV is configured using the Device Editor in PSoC Designer. The Device Editor allows
the Global Resources for the part and user module parameters to be configured. The keyboard uses
two separate user modules. The first module is an SPI master for communicating with the radio. The
second module is a Programmable Interval Timer configured to operate as a 12-bit timer. The follow-
ing is a screen capture of the Device Editor showing the User Module mapping. Further description
of resources and User Modules follow the diagram.

Table 4-2. ROM/RAM Usage

Total ROM
(Bytes)

Total RAM
(Bytes)

Basic Functions 5861 127

Build Option ROM Usage
(Bytes)

RAM Usage
(Bytes)

KEYBOARD_MULTIMEDIA_SUPPORT 756 1

KEYBOARD_TEST_MODES 339 1

KEYBOARD_BATTERY_VOLTAGE_SUPPORT 179 1

ENCRYPT_DATA TEA* 871 13

ENCRYPT_DATA AES 563 37

MOUSE_EMULATION_MODE 610 1

MFG_TEST_CODE 532 0

MFG_TX_MODES 707 1

BACK_CHANNEL_SUPPORT 185 5
56 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_56

Keyboard
Figure 4-6. Microcontroller Device Architecture
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 57

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_57

Keyboard
4.3.2.1 Global Configuration

The following is a description of the Global Resources that are configured for the CY7C60123-PVXC
enCoRe II LV microcontroller. Care must be taken when modifying these values as they affect the
User Modules discussed below.

CPU Clock
This parameter is set to Internal (24 MHz). In order to run the CPU at 12 MHz, CPU Clock/N needs
to be set to ‘2’. This operating frequency provides for faster code execution so that when events are
detected the microcontroller can be put back into the sleep state quicker for improved power sav-
ings.

CPU Clock / N
This parameter is set to ‘2’ to provide a 12 MHz clock.

Timer Clock
This parameter is set to TCAP.

Timer Clock /N
This parameter is set to ‘4’.

Capture Clock
This parameter is set to Low Power (32 kHz).

Capture Clock /N
This parameter is set to ‘6’.

Capture Edge
This parameter is set to Latest.

8 Bit Capture Prescaler
This parameter is set to ‘1’.

CLKOUT Source
This parameter is set to Internal (24 MHz).

EFTB
This parameter is set to Enable.

Crystal OSC
This parameter is set to Disable.

Crystal OSC Xgm
This parameter is set to 000.

Low V Detect
This parameter is set to 2.63V–2.68V.
58 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_58

Keyboard
V Reset
This parameter is set to 2.6V.

Watchdog Enable
This parameter should be set to Enable, but may be set to Disable for debug purposes.

4.3.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with the radio transceiver. The radio trans-
ceiver supports leading edge data latching, non-inverted clock, and MSB first transmission as
defaults. A clock divisor of 6 is chosen which generates an SPI clock of 2 MHz. The interrupt API to
this module is not used. In the PRoC RDK keyboard design, the 4-wire mode is employed.

4.3.2.3 Programmable Interval Timer User Module

The Programmable Interval Timer User Module is configured to use the Internal 32-KHz Low-power
Oscillator. This module is used to provide a periodic interrupt to the timer code module in order to
maintain a power saving millisecond sleep routine. The period of the timer is calibrated to the system
clock at power on in order to provide a period of about 1 ms. This calibration is performed to account
for variations in temperature and ILO variances from part to part. Configure the module to generate a
terminal count interrupt. The period parameter is ignored since it is programmed at run time based
upon the calibration results. See the timer code module for more details on calibration.

4.3.2.4 Flash Security

The keyboard project within PSoC Designer has a file called FlashSecurity.txt. This file specifies
access rules to blocks of Flash ROM. See the documentation at the top of the file for definitions. This
file is shipped with a single change from its default configuration. The blocks starting at address
1FC0 hex are changed from W: Full (Write protected) to U: Unprotected. These locations of Flash
are dedicated to save non-volatile configuration values for the protocol code module and non-volatile
session key for the encrypt code module. Note when building the mouse firmware, be sure to check
that the text image size does not occupy this block.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 59

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_59

Keyboard
4.3.3 Model

Figure 4-7. Firmware Architecture Model

The keyboard firmware is partitioned into two logical groups. The Common group is a collection of
code modules that provide the underlying support for the application. This group provides services
such as, radio protocol, radio driver, timing, flash access, and interrupts.

The Application group implements the core functionality and features of RDK wireless keyboard.
This includes power management, encryption, packet formatting and reporting, various test modes,
and battery level sensing. The code modules for each of these groups are described below in further
detail.

All of the following module descriptions have corresponding <module name>.c or <module
name>.asm and <module name>.h source code files. The module API and definitions are exported
in the header file while the module implementation and local definitions are contained in the C/
assembly file.

4.3.4 Common Code
The modules in the common code group are a combination of two sources. The first is PSoC
Designer generated files in the ‘lib’ directory that have been modified to support the application. The
second group is modules that are generally used by the application.

4.3.4.1 Generated Library Code

There are currently no files, generated by PSoC Designer, that are modified for the use of the appli-
cation.

4.3.4.2 Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the Radio Driver documentation for details.

flash radio driver

protocol

timer

isr

keyboard encryption

battery

mfgtest

tick

GPIO

Common

PSoC Lib

Application
60 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_60

Keyboard
4.3.4.3 Protocol Module

The protocol module defines and implements the layer used to deliver packets from the device to the
bridge. It manages the binding of devices to a bridge as well as the connection and interference
immunity by channel hopping. This module has a dependency on the radio driver for sending and
receiving formatted packets and the flash module for storing the manufacturing ID of the bridge the
device is bound to.

4.3.4.4 Flash Module

The flash module is a smaller version of the E2PROM module provided in PSoC Designer. It is lim-
ited in functionality and only implements the read/write routines required by the device. The flashse-
curity.txt file must be modified so that the block being modified by this module is given read/write
privilege, such as unprotected. Currently the one very top most block in flash is used by this module
for storing the encryption key if encryption is enabled and the bind parameters.

4.3.4.5 ISR Module

This module provides an interface to initialize the interrupt.

4.3.4.6 Timer Module

The timer module provides a one-millisecond tick for the system. The tick resolution can be
changed, but is set for one millisecond for the keyboard. This module requires the use of a 12-bit
Programmable Interval Timer user module of the enCoRe II LV. The delay function used for millisec-
ond timing provides at least the delay requested with no more than one additional millisecond of
delay. The millisecond delay function puts the PSoC in the sleep mode for the duration of the
requested delay. The microprocessor wakes just long enough to update the tick every millisecond
and check if the delay has been met and then returns to sleep state if it has not. See the documenta-
tion in the module for requirements on configuring the enCoRe II LV block.

4.3.5 Application Code
The group of modules that make up the application code is responsible for implementing the key-
board functionality and behavior. Following is a high level description of each module responsibility
and associated algorithms.

4.3.5.1 Keyboard Module

The keyboard module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the keyboard.

The function main() is the entry point for the keyboard application. This function is called from the
boot.asm file. The keyboard first initializes all of the application modules and then initializes the pro-
tocol module. There is an order dependency for some of these, so care must be taken in modifying
the keyboard_init() function. For example, other modules depend upon the timer facility running in
order to perform initialization. Once each module has been initialized, then the application checks for
entry to the manufacturing test mode. If the manufacturing test mode is not indicated, then normal
keyboard operation begins.

There are two states for the keyboard operation: the idle state and the active state. The keyboard ini-
tially enters idle state; when there is any keystroke, it enters the active state.

In active state the keyboard is scanned for both the keys and the Bind button. The keystrokes are
collected, formatted and reported to the bridge. After that, the keyboard goes into the idle state.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 61

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_61

Keyboard
In idle state the MCU and radio go to sleep to save power, and the keyboard application remains
waiting for input from the keys or Bind button. The timer is turned off to conserve power. This state is
maintained indefinitely until a keystroke or a button press occurs.

The battery level is reported by the keyboard application when it detects a keystroke after it has
been in an idle state for 8 seconds.

In the active state the keyboard attempts to deliver a packet for the amount of time designated in
KEYBOARD_TX_TIMEOUT. The keyboard application is also responsible for detecting the Bind but-
ton press and then calling the bind function in the protocol module.

The keyboard application sends keyboard reports as frequently as events arrive, but not any faster
than the time defined in the macro KEY_DOWN_DELAY_SAMPLE_PERIOD. Carefully set this time
so that the report rate does not exceed that which the USB bus is capable of handling. Keep in mind
that the report rate varies slightly due to drift of the internal oscillator used to keep track of time.

4.3.5.2 Mfgtest Module

The RDK provides a compile-time option of adding a manufacturing test mode to the keyboard. The
manufacturing test code in this keyboard is compatible with the CY3631 Manufacturing Test Kit
offered by Cypress Semiconductor.

If MFG_TEST_CODE is defined and ENTER_BY_PIN is not defined, holding down the system sleep
key and the Bind button while inserting the batteries into the keyboard enters the manufacturing test
mode.

If MFG_TEST_CODE and ENTER_BY_PIN are both defined, connecting pin 4 and 5 on the ISP
header with a shunt and then inserting the batteries into the keyboard enters the manufacturing test
mode.

The only way to exit this mode is to cycle power.

4.3.5.3 Battery Module

The battery monitor circuit is implemented using the Low Voltage Interrupt (LVI) on the LP radio. Fol-
lowing is an explanation of the process to measure the battery voltage.

The process first sets the LVI threshold to 1.8V and then checks for an LVI interrupt. If the interrupt
does not occur then it repeatedly sets the LVI TH and PMU OUTV with the following combination
and checks the status.

It then returns a battery level between 1 and 10: 1 being below 1.8V and 10 being above 2.7 volts.

4.3.5.4 Test Module

This RDK keyboard provides a compile-time option of adding test modes to the keyboard; see sec-
tion KEYBOARD_TEST_MODES on page 64 for enabling this option. The test mode module is
implemented in a way that it can be easily extended to add other test modes. Currently there are
only two test modes supported in the module. When this option is not enabled then all test mode
code is removed from the compilation.

Table 4-3. LVI TH and PMU OUTV Combinations

LVI TH PMU OUTV VOLTAGE IF INTERRUPT OCCURS
1.8V 2.7V < 1.8V

2.0V 2.7V < 2.0V

2.2V 2.7V < 2.2V

PMU OUTV 2.7V < 2.7V
62 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_62

Keyboard
The first test mode is initiated by holding down the left Ctrl, left Alt, right Alt, right Ctrl, and F1 keys at
the same time. If PANGRAM_TEST_MODE is defined, the test sends the key up/down scan codes
for the test pangram: ”a quick brown fox jumps over the lazy dog.<carriage return>” . Otherwise the
up/down scan codes are repeatedly sent for the test sequence ‘wirelessusb’ followed by the same
number of backspaces. The test repeats the appropriate sequence until the escape key is pressed.
Once the test has finished execution, the keyboard returns to normal operation.

The repeating ‘x’ test selection is initiated by holding down the left Ctrl, left Alt, right Alt, right Ctrl,
and F3 keys at the same time. The test continuously sends the ‘x’ key up/down scan codes. The test
continues until the escape key is pressed. Once the test has finished execution, the keyboard
returns to normal operation.

4.3.5.5 Encrypt Module

This module may be conditionally compiled in to provide encryption/decryption support. Encrypted
data transfers are typically used between RDK keyboard devices and the RDK bridge. Contact
Cypress Applications support for the encryption source code.

4.3.6 Configuration Options
All configuration options for the application can be found in the config.h file, and some of them are
defined in the Project > Setting > Compiler > Macro defines. Each option is explained below and can
be changed to values that meet the developer’s needs.

4.3.6.1 KEYBOARD_KEEP_ALIVE_TIMEOUT

When a key is held down, this configuration value sets the period at which the firmware generates a
KEEP_ALIVE packet since the last keyboard report. The default is 65 milliseconds.

4.3.6.2 KEY_DOWN_DELAY_SAMPLE_PERIOD

This configuration value sets the period at which the firmware polls the hardware for keyboard
events to transmit over the radio. This poll period is only active when the keyboard has not entered
sleep because keys are currently being pressed. The default value is 10 milliseconds.

4.3.6.3 KEYBOARD_DEBOUNCE_COUNT

The button debounce logic detects changes in the button state and immediately indicates a change
causing a report to be sent to the radio. The debounce logic then blocks out any further button state
changes for the specified debounce time. This operation is somewhat different from the usual
method of waiting for a button to stabilize during a debounce interval, and then reporting the change
in button state. It is implemented this way to improve button-reporting latency.

This configuration value sets the debounce time for buttons that are pressed. It is measured in units
of the poll rate. For example, if KEYBOARD_DEBOUNCE_COUNT is defined as ‘2’ and
KEY_DOWN_DELAY_SAMPLE_PERIOD is defined as 10, the button debounce time will be 20 mil-
liseconds. The default setting is ‘2’.

4.3.6.4 KEYBOARD_MULTIMEDIA_SUPPORT

This configuration definition is used to selectively compile support for multimedia (hot) keys. If this
value is defined, then multimedia key support is compiled into the executable image. If it is not
defined, the multimedia support code is omitted.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 63

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_63

Keyboard
4.3.6.5 KEYBOARD_TEST_MODES

This configuration definition is used to selectively compile code for keyboard test modes. If this value
is defined, then test modes are compiled into the executable image. If it is not defined, then the test
mode code is omitted. The test modes are described in section Test Module on page 62.

4.3.6.6 KEYBOARD_TEST_MODE_PERIOD

This configuration value sets the period that the keyboard generates on test key presses. A key
press consists of a scan code as the down key and a NULL as the up key. The default value is
10 ms.

4.3.6.7 PANGRAM_TEST_MODE

This configuration definition is used to selectively compile in the pangram test mode. A pangram is a
sentence that contains all of the letters of the alphabet at least once.

4.3.6.8 KEYBOARD_BATTERY_VOLTAGE_SUPPORT

This configuration definition is used to selectively compile support for battery voltage level reporting.
If this value is defined, then battery voltage level reporting is compiled into the executable image. If it
is not defined, then the battery voltage level reporting code is omitted.

4.3.6.9 LP_RDK_KEYBOARD_MATRIX

This configuration definition is used to selectively compile in the keyboard matrix for the RDK key-
board hardware.

4.3.6.10 KEYBOARD_TX_TIMEOUT

This configuration value sets the maximum time that the keyboard tries to send a report to the
bridge. The default value is 5000 ms.

4.3.6.11 TIMER_CAL

This configuration definition is used to selectively compile in the one-millisecond timer calibration
routine. The routine is called on power on and during protocol reconnect.

4.3.6.12 ENCRYPT_TEA

This configuration definition is used to selectively compile in TEA encryption for the keyboard. Con-
tact Cypress Applications support for the encryption source code.

4.3.6.13 ENCRYPT_AES

This configuration definition is used to selectively compile in AES encryption for the keyboard. Con-
tact Cypress Applications support for the encryption source code.

4.3.6.14 MFG_TEST_CODE

This configuration definition is used to selectively compile in the manufacturing test code. The man-
ufacturing test code in this keyboard is compatible with the CY3631 Manufacturing Test Kit offered
by Cypress Semiconductor. See the mfgtest module for a description of how this test mode is exe-
cuted. See the CY3631 Manufacturing Test Kit documentation for a description of the test operation.

4.3.6.15 MFG_ENTER_BY_PIN

This configuration definition is used to select whether the manufacturing test code is executed by
connecting pin 4 and 5 on the ISP (programming) header. When this value is not defined, then the
64 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_64

Keyboard
manufacturing test code may be executed by holding the system sleep key and the Bind button
when the batteries are inserted into the keyboard.

4.3.6.16 MFG_TX_MODES

When the MFG_TEST_CODE is defined, the definition of this name adds in a carrier and random
data TX test option. See the mfgtest module for more information on these TX modes.

4.3.6.17 MOUSE_EMULATION_MODE

This configuration definition is used to selectively compile in the mouse Emulation mode. The Scroll
Lock key is used to toggle this mode on/off. Once in this mode, the arrow keys are used to move the
mouse. The Delete key is the left mouse button, the End key is the right mouse button, and Page Up
and Page Down emulate the scroll wheel.

4.3.6.18 BACK_CHANNEL_SUPPORT

This configuration definition is used to selectively compile in the Back Channel Data Support feature.
See section Back Channel Data Support on page 20 for a description of Back Channel Data Sup-
port.

4.3.6.19 MASTER_PROTOCOL

This configuration definition is used to select the Master radio protocol or Slave radio protocol. For
the keyboard application, it should be undefined.

4.3.6.20 PAYLOAD_LENGTH

This configuration definition is used to define the payload length. For the keyboard application, it
should be defined as 8.

4.3.6.21 KISS_BIND

This configuration definition is used to selectively compile in the Enhanced KissBind feature. See
section Enhanced KISSBind™ on page 18 for a description of Enhanced KissBind.

The keyboard can be un-bound by holding the ‘Esc’ key and ‘Delete’ key. After being un-bound, the
keyboard enters an infinite loop until a POR.

After being un-bound, the keyboard can be bound to a bridge by KissBind.

4.3.6.22 RSSI_QUALIFY

This configuration definition is used to enable the RSSI qualification for the Enhanced KissBind.
Only if the RSSI reading is above KISS_BIND_RSSI_THRESHOLD, can the KissBind request/
response be accepted by the Bridge/Devices.

4.3.6.23 PLATFORM_H

This configuration value identifies the header file that has the platform configuration information. The
default value is pdc9265.h, which is identifier for the keyboard board that is shipped with the RDK. It
is anticipated that this macro will change when the code is ported to another platform.

4.3.7 Platform and Architecture Portability
The keyboard firmware was designed to be easily ported from one hardware platform to another
platform with a simple re-mapping of pins on the enCoRe II LV. The file pdc9265.h maintains the pin
mapping definitions that are used throughout the code and is included in about every file by using
the macro PLATFORM_H that is defined in config.h.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 65

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_65

Keyboard
The keyboard scan matrix is defined in kdefs.h and may need to be changed for different keyboards.

Porting the code to another microprocessor architecture requires modification or leverage of the
existing code for processor specific features, along with pin definitions.

4.3.8 Initialization
Initialization of the enCoRe II LV chip is done by code that is generated in boot.asm by the PSoC
Designer software. The module boot.asm calls main once the enCoRe II LV has been configured
and initialized.

Main initializes the components of the keyboard along with timer, isr and radio modules. The main
routine then goes into an infinite loop monitoring keyboard activity and sleeping between keystrokes.

4.3.9 Wireless Protocol Data Payload
The keyboard protocol has been optimized to reduce the ‘on time’ of the radio and power consump-
tion.

The radio driver offers the ability to send variable length packets, allowing the opportunity to mini-
mize the number of bytes transmitted over the air, in order to extend battery life.

The following transmission packet formats are implemented in this RDK. The report formats show
the application payload and the radio protocol overhead with example packet headers.

4.3.9.1 Keyboard Application Report Formats

The first byte of the data packet payload, byte 2 of the radio packet, is used as a keyboard applica-
tion report header. There are five possible keyboard application reports. The reports are:
■ Standard 101 Keys report
■ Multimedia Keys report
■ Power Keys report
■ Keep Alive report
■ Battery Voltage Level report

The first application report byte is Scan Code 1 if the byte is less than 0xFC. Otherwise, the first
application report byte is the Application Report Header (Multimedia, Power, Battery, or Keep Alive).
This also assumes that multimedia and power keys do not use modifier keys and that 0xFF, 0xFE,
0xFD and 0xFC are not valid Standard 101 key scan codes.

Trailing zeros in the reports are also removed to further minimize the number of bytes sent by the
radio.

The LP radio sends the reports with the format shown in Table 4-4.

4.3.9.1.1 Standard 101 Keys Report

If the Application Report Header byte is less than 0xFC, then this indicates that this report is a Stan-
dard 101 Keys report and the first byte is the actual scan code rather than the Report Header. This is

Table 4-4. LP Generic Report

Byte 1 2 N

Bits: 7:4 3 2 1 0 7:0 7:0 7:0 7:0

Field: 4 BCDR Toggle DTO DT1
Application

Report
Header

Byte N
66 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_66

Keyboard
done to optimize the packet size based on the fact that the most common report has only one non-
zero scan code without a modifier. The full Standard 101 Keys report format is shown in Table 4-5.

Example
The following reports is sent if a user presses an ‘a’ on the keyboard. The down key packet sent from
the keyboard to the bridge is shown in Table 4-6.

The bridge then adds the trailing zeros, inserts the reserved byte, rearranges the modifier and scans
code 1 bytes and removes the packet header to produce the USB report shown in Table 4-7.

The up key packet sent from the keyboard to the bridge (all data bytes are zero) is shown in
Table 4-8.

The bridge then adds the trailing zeros, inserts the reserved byte, and removes the packet header to
produce the USB report shown in Table 4-9.

Table 4-5. Standard 101 Keys Report Format

Byte Name

2
Scan Code 1

 (< 0xFC)

3 Modifier Keys

4 Scan Code 2

5 Scan Code 3

6 Scan Code 4

7 Scan Code 5

8 Scan Code 6

Table 4-6. Example ‘a’ Down Key Standard 101 Keys Report

Byte 2
Scan Code 1

0x04

Table 4-7. Example USB Report for the ‘a’ Down Key

Modifier
Keys Reserved Scan Code

1
Scan Code

2
Scan Code

3
Scan Code

4
Scan Code

5
Scan Code

6
0x00 0x00 0x04 0x00 0x00 0x00 0x00 0x00

Table 4-8. Example Up Key Standard 101 Keys Report

Byte 2
Scan Code 1

0x00

Table 4-9. Example USB Report for a Standard 101 Key Null Packet Report

Modifier
Keys Reserved Scan Code

1
Scan Code

2
Scan Code

3
Scan Code

4
Scan Code

5
Scan Code

6
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 67

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_67

Keyboard
4.3.9.1.2 Multimedia Keys (Hot keys) Report

An Application Report Header of 0xFF indicates that this report is a Multimedia Keys report. The
Multimedia Keys report format is shown in Table 4-10.

Example
The following reports is sent if a user presses the ‘Volume Increase’ (Hot Key 8) key on the key-
board.

The ‘Volume Increase’ down key packet sent from the keyboard to the bridge is shown in Table 4-11.

The up key packet sent from the keyboard to the bridge is shown in Table 4-12.

4.3.9.1.3 Power Keys (Suspend/Sleep) Report

An Application Report Header of 0xFE indicates that this report is a Power Keys report. The Power
Keys report format is shown in Table 4-13.

Table 4-10. Multimedia Keys Report Format

Byte Name

2
Application Report Header

0xFF

3
Hot Key Scan Code

(upper 8 bits)

4
Hot Key Scan Code

(lower 8 bits)

Table 4-11. Example ‘Volume Increase’ Down Key Multimedia Keys Report

Application Report

Application Report
Header

Hot Key Scan Code
(upper 8 bits)

Hot Key Scan Code
(lower 8 bits)

0xFF 0x00 0xE9

Table 4-12. Example Up Key Multimedia Keys Report

Application Report
Application Report Header

0xFF

Table 4-13. Power Keys Report Format

Byte Name

2
 Application Report Header

(0xFE)

3 Power Key Scan Code
68 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_68

Keyboard
Example
The following reports are sent if a user presses the Suspend/Sleep (Power Key 0) key on the key-
board.

The Suspend/Sleep down key packet sent from the keyboard to the bridge is shown in Table 4-14.

The up key packet sent from the keyboard to the bridge is shown in Example Up Key Power Keys
Report.

4.3.9.1.4 Keep Alive Report

An Application Report Header of 0xFC indicates that this report is a Keep Alive report.

Example of a Keep Alive reports sent from the keyboard to the bridge is shown in Table 4-16.

If the bridge does not receive a Keep Alive packet or an up key within a specified interval
(DOWNKEY_TIME_OUT) while a down key is present, the bridge generates an up key to the com-
puter.

4.3.9.1.5 Battery Voltage Level Report

An Application Report Header of 0xFD indicates that this report is a Battery Voltage Level report.
The Battery Voltage Level report format is shown in Table 4-17.

The Battery Voltage Level ranges from 1 (low) to 10 (full).

The Battery Voltage Level report is sent after a keystroke that occurs whenever the keyboard has
been in idle for more than 8 seconds.

Table 4-14. Example Suspend/Sleep Down Key Power Keys Report

Application Report
Application Report

Header Power Key Scan

0xFE 0x02

Table 4-15. Example Up Key Power Keys Report

Application Report
Application Report Header

0xFE

Table 4-16. Example Keep Alive Report (Null Packet Support disabled)

Application Report
Application Report Header

0xFC

Table 4-17. Battery Voltage Level Report Format

Byte Name

2
Application Report Header

0xFD

3 Battery Voltage Level
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 69

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_69

Keyboard
Example of a Battery Voltage Level report with fully charged batteries is shown in Table 4-18.

Example of a Battery Voltage Level report with low batteries is shown in Table 4-19.

4.3.10 Ghost Key Detection
Ghost keys are possible on the RDK keyboard because it does not use diodes with the keyboard
switches. Ghost keys are caused when three keys are pressed at the same time and two of the keys
are on the same column and two of the keys are on the same row. When scanning the keyboard, it
appears that four keys have been pressed and it is impossible to tell which three of the four keys are
actually valid. The keyboard code detects this condition and does not send a report until one of the
three keys is released.

For example, assume the keys (RowX, ColumnA), (RowX, ColumnB), and (RowY, ColumnA) have
been pressed as shown in Figure 4-8. It appears that the key (RowY, ColumnB) has been pressed
as well when it has not since the other keys electrically connect RowY to ColumnB.

Figure 4-8. Ghost Key Example

4.3.11 Interrupt Usage / Timing
In the RDK keyboard, the following interrupts have been enabled:
■ Row Port interrupt
■ Bind button interrupt

When either of the above interrupts occurs, its ISR sets the flag.

Table 4-18. Example ‘full’ Battery Voltage Level Report

Application Report
Application

Report Header
Battery Voltage Level

0xFD 0x0A

Table 4-19. Example ‘low’ Battery Voltage Level Report

Application Report
Application Report

Header
Battery Voltage Level

0xFD 0x01
70 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_70

Keyboard
The interrupt latency includes two portions. The first portion is the time between the assertion of an
enabled interrupt and the start of its ISR, which can be calculated using the following equation:

Latency1 = Time for current instruction to finish +
Time for M8C to change program counter to interrupt address +
Time for LJMP instruction in interrupt table to execute.

For example, if the 5-cycle JMP instruction is executing when an interrupt becomes active, the total
number of CPU clock cycles before the ISR begins are as follows:

(1 to 5 cycles for JMP to finish) +

(13 cycles for interrupt routine) +

(7 cycles for LJMP) = 21 to 25 cycles.

In the example above, at 12 MHz, 25 clock cycles take 2.083 µs.

The second portion is the time between the start of the ISR and the set of the flag. For example, the
row port interrupt (caused by pressing any key) takes 19 CPU clock cycles for this portion. There-
fore, the Latency2 equals to 1.583 µs for the 12 MHz CPU.

Consequently, the total latency for a button interrupt is

Latency1 + Latency2 = 3.667 µs

4.3.12 Code Performance Analysis
A key press report is used to analyze the code performance. A typical key press report contains the
following steps:
■ A key press interrupts the MCU. The prior section has calculated that it takes 3.667 µs for MCU to

responds to this Interrupt.
■ MCU exits the sleep state, scans the Bind button and turns on the timer. It takes 40.8 µs.
■ MCU calls function scan_keyboard() to detect which key is pressed. This function consumes 1.15

ms.
■ MCU calls function generate_standard_report() to format the report and send the report to the

bridge. This step takes 2.01 ms, which includes 1.66 ms radio transmission time.

As a result, it takes 3.20 ms for the keyboard to report a key press to the bridge.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 71

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_71

Keyboard
4.4 Modifying the Keyboard Matrix or Adding New Keys
The current keyboard matrix with the USB scan codes are shown in Table 4-1 on page 55. Custom-
ers may modify the keyboard matrix or they may add new keys to their keyboard. The following sec-
tions explain the procedure.

4.4.1 Modifying the Keyboard Matrix
In the file kdefs.h, a table called default_keyboard_scan_table matches the keyboard matrix shown
in Table 4-1 on page 55. By modifying this table, the keyboard matrix is automatically modified.

4.4.2 Adding New Keys
Example
The customer wants to add a multimedia key called ‘My Computer’, which is located at Column 15
and Row 6 and has a scan code of 0x0194. The following steps must be performed:
1. Go to file kdefs.h, and search for default_keyboard_scan_table. In the Col 15 (0xF) section, mod-

ify line 7 from {NO_DEVICE, NOKEY} to {DEVICE_2, 0x000E}. The 0x000E is the index into the
device 2 table.

2. Go to the table called device_2_keyboard_scan_table within the same file and add the scan code
of 0x0194 to the end of the table, as shown:
const UINT16 device_2_keyboard_scan_table[] =
{
 0x0192, // Calculator
 0x0223, // WWW Home
 0x00CD, // Play/Pause
 0x0221, // WWW Search
 0x018A, // Mail
 0x00E9, // Volume Up
 0x00E2, // Mute
 0x00B7, // Stop
 0x00EA, // Volume Down
 0x022A, // WWW Favorites
 0x0225, // WWW Forward
 0x0224, // WWW Back
 0x00B6, // Scan Previous Track
 0x00B5, // Scan Next Track
 0x0194, // My Computer
};

3. Build the firmware, the new key ‘My Computer’ will work.
72 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_72

Keyboard
4.5 Development Environment
This section informs you about the tools you may need and presents ideas you can try.

4.5.1 Tools
See the CY4672 Getting Started Guide for a list of tools required to build and debug the keyboard
application.

Figure 4-9. RDK Keyboard with POD Installed

4.5.2 Tips and Tricks
A couple of ways for working with the kit are the following.

4.5.2.1 M8C Sleep

When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of the
sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to synchroni-
zation issues between the OCD part and the emulator.

4.5.2.2 Watchdog Timer

The watchdog timer is enabled for the RDK operation, but may be disable for debug purposes.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 73

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_73

Keyboard
4.5.3 Critical Test Points

Figure 4-10. RDK Keyboard Test Points

CLKOUT

PACTL

MISO

MOSI
nSS

SCK IRQ
74 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_74

5. Bridge
5.1 Introduction
This section covers the design goals, architecture, firmware source code modules and configuration
options for the PRoC™ LP bridge. It does not cover the details of the radio subsystem or the config-
uration options that go with it.

5.1.1 Design Features
The CY4672 Reference Design Kit uses PRoC LP CYRF69213 for the bridge. Contact your local
sales representative for more information on the PRoC LP controller.

The architecture was designed to be modular for extendibility and maintainability. It was also
designed so that it could easily be ported from one hardware platform to another assuming the use
of an equivalent microprocessor. Porting to another microprocessor requires more work to account
for the USB hardware support and other hardware specific changes.

Design efforts have been made to reduce the ‘on time’ of the microprocessor and radio to conserve
battery life of attached devices. This includes protocol optimizations along with using sleep features
of the PRoC LP.

5.2 Hardware Overview
The PRoC LP bridge is provided with the RDK. This bridge may be plugged into the USB port on a
PC to provide the Wireless USB bridge functionality. The bridge firmware is written in C and assem-
bly code, and runs on the PDC-9348 USB HID bridge. The rest of this section gives a functional
overview of the bridge firmware.

The bridge connects the remote RoC LP HID’s to a low-speed USB host. This firmware supports
2-way communication with bridge and HID devices configured as transceivers.

Packets similar to standard USB HID packets are encapsulated inside wireless PRoC LP packets,
which also contain a packet header and CRC to help the bridge correctly process the USB HID data
packets. Valid packets are then sent via USB to the USB host.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 75

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_75

Bridge
5.2.1 Bridge Photographs
Figure 5-1 shows the top side of the RDK bridge board. The side button on the board is the Bind but-
ton.

Figure 5-1. RDK Bridge Top

Figure 5-2 shows the bottom side of the RDK bridge board.

Figure 5-2. RDK Bridge Bottom

5.2.2 In-System Programming
The PRoC LP Bridge has the capability of being programmed through the USB connector using a
Cypress USB adapter board PDC-9241 as shown in Figure 5-3.

Figure 5-3. Cypress USB Programming Adapter

76 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_76

Bridge
Figure 5-4 shows the PRoC LP RDK bridge connected with a USB adapter board to a PSoC Mini-
Prog.

Figure 5-4. RDK Bridge with USB Adapter and PSoC MiniProg

5.2.3 Schematics
The PRoC LP RDK bridge schematics and Gerber files are located in the following directory:
<installation directory>\Hardware\Bridge. The schematic is in Adobe Acrobat PDF for-
mat with the letters ‘Sch’ in the file name.

5.2.4 LED Usage
Red LED:
■ The red LED blinks ON/OFF when the bridge is in Bind mode. The ON and OFF time is approxi-

mately 320 ms which is the rate at which the bridge changes channels during the Bind process.
■ The red LED also blinks ON/OFF when the PC is suspended. The blinking rate is approximately

1 second which is the frequency of the wake up interrupts.

Green LED:
■ The green LED turns on when the bridge receives data from the mouse or keyboard. It remains

on for 250 ms since the last received Data packet.
■ The green LED turns on and remains on if a key is pressed and held (due to the keyboard’s send-

ing Keep Alive packets).
■ The green LED turns on and remains on during ping mode (in normal operation, ping mode is a

very short period. The user may not notice this period).

The Red and Green LED are blinking alternately when in Manufacturing Test mode.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 77

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_77

Bridge
5.3 Firmware Architecture
There are two architectural views of the bridge. The first is a microcontroller configuration view of
User Modules inside the controller. This architecture and configuration is best viewed in the PSoC
Designer application when the project is loaded. The second view is a logical organization of the
source code modules that make up the bridge application code and other support modules.

The next two sections describe both architectures with emphasis on top-level organization and over-
all module operation. To obtain more detailed descriptions of variables and functions, reference the
source code.

5.3.1 ROM/RAM Usage
The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options below. The bottom part exhibits the ROM/RAM
usage for individual build options.

*The ENCRYPT_TEA option needs 64 bytes of extra ROM space to store the non-volatile session
key.

5.3.2 PRoC LP Device Configuration
The PRoC LP Programmable Radio on Chip is configured using the Device Editor in PSoC
Designer. The bridge uses the SPI Master, USB Device, and the 1 Millisecond Interval Timer User
Modules. The SPI Master User Module is used by firmware to communicate with the LP radio mod-
ule. The USB Device User Module allows the bridge to operate as a low-speed USB device. The 1
Millisecond Interval Timer User Module is used for timing. Following is a screen shot of the Device
Editor showing the User Module mapping. Further description of resources and User Modules follow
the diagram.

Table 5-1. ROM/RAM Usage

Total ROM (Bytes) Total RAM (Bytes)

Basic Functions 7251 170

Build Option ROM Usage (Bytes) RAM Usage (Bytes)

ENCRYPT_DATA TEA* 815 29

ENCRYPT_DATA AES 990 35

MFG_TEST_CODE 541 0

MFG_TX_MODES 651 2

BACK_CHANNEL_SUPPORT 147 1
78 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_78

Bridge
Figure 5-5. CYRF69213 Device Architecture
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 79

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_79

Bridge
5.3.2.1 Global Configuration

The following is a description of the Global Resources that are configured for the PRoC LP
CYRF69213. Be very careful when modifying these values as they affect the User Modules dis-
cussed below.

CPU Clock
This parameter is set to Internal (24 MHz). In order to run the CPU at 12 MHz CPU Clock/N needs to
be set to ‘2’. This operating frequency provides for faster code execution.

CPU Clock / N
This parameter is set to ‘2’ to provide a 12 MHz clock.

Timer Clock
This parameter is set to FreeRun Timer.

Timer Clock /N
This parameter is set to ‘4’.

Sleep Timer
This parameter is set to 1_Hz.

FreeRun Timer
This parameter is set to Low Power (32 kHz).

FreeRun Timer /N
This parameter is set to ‘6’.

Capture Edge
This parameter is set to Latest.

8 Bit Capture Prescaler
This parameter is set to ‘1’.

USB Clock
This parameter is set to Internal (24 MHz).

USB Clock /2
This parameter is set to Enable.

CLKOUT Source
This parameter is set to Internal (24 MHz).

Low V Detect
This parameter is set to 4.44 – 4.53 V.

V Reset
This parameter is set to 3.3V.
80 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_80

Bridge
VReg
This parameter is set to Disable, and the VReg will be enabled in the application code.

V Keep-alive
This parameter is set to Disable.

Watchdog Enable
This parameter should be set to Enable, but may be set to Disable for debug purposes.

5.3.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with the radio transceiver. The radio trans-
ceiver supports leading edge data latching, non-inverted clock, and MSB first transmission as
defaults. A clock divisor of 6 is chosen which generates an SPI clock of 2 MHz. The interrupt API to
this module is not used.

In the PRoC RDK bridge design, the bridge implements the "3 wire" SPI; therefore, the microcontrol-
ler's MISO and the radio MISO can be used as GPIOs. Also, the IRQ pin function is multiplexed onto
the MOSI pin to save the GPIO pin.

5.3.2.3 USB Device User Module

The USB Device User Module handles the enumeration and data transfers over USB endpoints.

5.3.2.4 1 Millisecond Interval Timer User Module

The 1 Millisecond Interval Timer User Module is used to determine when a USB suspend has
occurred, LED on/off duration timing, RSSI checking and others.

5.3.2.5 Flash Security

The bridge project within PSoC Designer has a file called FlashSecurity.txt. This file specifies access
rules to blocks of the Flash ROM. Refer to the documentation listed at the top of the file for defini-
tions. This file is shipped with a single change from its default configuration. The block starting at
address 0x1FC0 has been changed from W: Full (Write protected) to U: Unprotected. This location
of Flash has been dedicated to saving non-volatile session key for the encrypt code module and the
device flag for KISSBind™.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 81

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_81

Bridge
5.3.3 Model

Figure 5-6. Firmware Architecture Model

The bridge firmware is partitioned into two logical groups. The Common group is a collection of code
modules that provide the underlying support for the application. This group provides services such
as, radio protocol, radio driver, USB, timing, flash access, SPI, and interrupts.

The Application group implements the core functionality and features of the RDK wireless bridge.
This includes USB HID packet formatting and reporting, encryption, and manufacturing test mode.
The code modules for each of these groups are described below in further detail.

All of the following module descriptions have corresponding <module name>.c and <module
name>.h source code files. The module API and definitions are exported in the header file while the
module implementation and local definitions are contained in the C file.

5.3.4 Common Code
The modules consist of the common code logical grouping.

5.3.4.1 PSoC Generated Library Code

There are currently only three files generated by PSoC Designer that are modified for the use of the
application. A minimal amount of code has been added to these modules in user protected areas
that are preserved across code generation.

5.3.4.1.1 USB include (USB_1.inc)

This file includes the additional code for the Battery Level and Link Quality software application in
USB_1_cls_hid.asm.

radio driver

master
protocol

timer

flash

main

USB

encrypt

mfgtest

mstimer

usb_1

Common

PSoC Lib

Application
82 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_82

Bridge
5.3.4.1.2 USB HID Class Module (USB_1_cls_hid.asm)

The additional user code provides support for the Battery Level and Link Quality software applica-
tion.

5.3.4.1.3 1 Millisecond Interval Timer Interrupt Module (MSTIMER.asm)

The additional user code decrements application countdown timers and checks for USB activity to
detect a USB suspend condition.

5.3.4.2 Flash

The module includes routines to write to the PRoC LP Flash.

5.3.4.3 Timer

The module includes busy wait time routines.

5.3.4.4 Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the Radio Driver documentation for details.

5.3.4.5 Master Protocol

The module includes PRoC LP RDK master protocol routines to handle ping, button bind, channel
agility and data packets. This module has a dependency on the radio driver for sending and receiv-
ing formatted packets and the flash module.

5.3.5 Application Code
The group of modules that make up the application code is responsible for implementing the bridge
functionality and behavior.

5.3.5.1 Bridge Module

The bridge module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the bridge. The function main() is the entry point
for the bridge application. This function is called from the boot.asm file. The bridge first initializes all
of the application modules and then initializes the master_protocol module. There is an order depen-
dency for some of these, so care must be taken in modifying the bridge_init() function. For example,
other modules depend upon the timer facility running in order to perform initialization. Once each
module has been initialized, then the application checks for entry to the manufacturing test mode. If
the manufacturing test mode is not indicated, then normal bridge operation begins.

The bridge continuously checks the USB idle timer, received packet, the Bind button and the USB
suspend.

5.3.5.1.1 Check the USB Idle Timer

The check_usb_idle() function is called within the main() function to properly handle the USB
Set_Idle command. The USB Set_Idle command from the host PC is used to silence the keyboard or
mouse report until a new event occurs or the specified amount of time passes. If the host PC’s
Set_Idle command sets the Idle Duration to ‘0’, the keyboard or mouse endpoint will inhibit reporting
forever, only reporting when a change is detected in the report data. This causes the bridge to NAK
any polls on the endpoint while its current report remains unchanged. If the Set_Idle command sets
the Idle Duration to a non-zero number, a single report is generated by the endpoint if the given time
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 83

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_83

Bridge
duration elapses with no change in report data (see the HID Specification for more information on
this topic).

The check_usb_idle() function also checks the timeout for down key and ‘keep alive’ packet. A ‘keep
alive’ packet is transmitted every 65 ms during the time a key is pressed, so that the bridge can
detect if the RF link is lost, and in that unlikely case, the bridge inserts a ‘key up’ event, to prevent a
‘stuck key’ state being transmitted to the PC. The number of milliseconds before upkey reports are
generated is defined by DOWNKEY_TIME_OUT.

5.3.5.1.2 Check the Received Packet

When the bridge receives a valid packet, it parses this packet. If it is a data packet, the bridge for-
mats and sends a USB packet to the USB host. If it is a connect request with an approved device or
a ping request, the bridge sends a response correspondingly.

5.3.5.1.3 Check the Bind Button

The bridge checks the Bind button frequently. If this button is pressed, the bridge goes into the bind
state.

5.3.5.1.4 Check the USB Suspend

The check_usb_suspend() monitors the USB suspend condition on the USB bus and takes proper
actions to put the system into a low power state when no bus activity is observed for 3 ms.

When suspended, the bridge supports remote wakeup by intermittently turning the radio on when the
sleep timer interrupt occurs, checking for valid data from the HID devices, and then turning the radio
off again if no HID traffic was detected.

5.3.5.2 USB Module

This module parses the radio packets, builds the appropriate keyboard and mouse USB packets and
loads these packets into the endpoints.

5.3.5.3 Mfgtest Module

The manufacturing test module may be conditionally compiled in to provide manufacturing test sup-
port. The module configures the radio for reception and then enters a loop waiting for command
packets to be sent from the tester. The test echoes all echo command packets appended with the
number of invalid bits received and all other ‘valid’ command packets (no invalid bits). The manufac-
turing test code can only be exited by cycling power. The manufacturing test code in this bridge is
compatible with the CY3631 Manufacturing Test Kit offered by Cypress Semiconductor.

The manufacturing test mode on the PRoC LP RDK bridge can be entered by three different meth-
ods depending on the compile-time configuration.

Method 1: Press the Bind button during dongle insertion into the USB Host to enter the manufactur-
ing test mode.

Method 2: Force an SE1 condition (D+ and D – are both high) on the USB bus and at the same time
apply power to the bridge.

Method 3: Ground the P0.7 pin during dongle insertion into the USB Host to enter the manufacturing
test mode.

5.3.5.4 Encrypt Module

This module may be conditionally compiled in to provide encryption/decryption support. Encrypted
data transfers are typically used between RDK keyboard devices and the RDK bridge. Contact
Cypress Applications support for the encryption source code.
84 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_84

Bridge
5.3.6 Configuration Options
All configuration options for the application can be found in the config.h file, and some of them are
defined in the Project > Setting > Compiler > Macro defines. Each option is explained below and can
be changed to values that meet the developer’s needs.

5.3.6.1 MFG_TEST_CODE

This configuration definition is used to selectively compile in the manufacturing test code. The man-
ufacturing test code in this bridge is compatible with the CY3631 Manufacturing Test Kit offered by
Cypress Semiconductor. See Mfgtest Module on page 84 for a description of how this test mode is
executed. See the CY3631 Manufacturing Test Kit documentation for a description of the test opera-
tion.

5.3.6.2 MFG_TX_MODES

When the MFG_TEST_CODE is defined, the definition of this name adds a carrier and random data
TX test option. See Mfgtest Module on page 84 for more information on these TX modes.

5.3.6.3 MFG_ENTER_BY_PIN

This configuration definition is used to selectively compile in a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by grounding a
specific pin during insertion of the PRoC LP RDK bridge into a powered USB port or applying exter-
nal power.

5.3.6.4 MFG_ENTER_BY_BUTTON

This configuration definition is used to selectively compile in a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by holding the
Bind button during insertion of the PRoC LP RDK bridge into a powered USB port or applying exter-
nal power.

5.3.6.5 MFG_ENTER_BY_USBSE1

This configuration definition is used to selectively compile in a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by causing a
USB SE1 condition on the D+ and D– signals during insertion of the PRoC LP RDK bridge into a
powered USB port or applying external power.

5.3.6.6 ENCRYPT_TEA

This configuration definition is used to selectively compile in TEA encryption for the bridge. Contact
Cypress Applications support for the encryption source code.

5.3.6.7 ENCRYPT_AES

This configuration definition is used to selectively compile in AES encryption for the bridge. Contact
Cypress Applications support for the encryption source code.

5.3.6.8 GREEN_LED_ON_TIME

This configuration definition defines the number of milliseconds the Green LED stays on after a valid
USB report is loaded in an endpoint.

5.3.6.9 DOWNKEY_TIME_OUT

This configuration definition defines the number of milliseconds before upkey reports are generated
by the bridge in the absence of valid packets from an attached keyboard device.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 85

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_85

Bridge
5.3.6.10 BACK_CHANNEL_SUPPORT

This configuration definition is used to selectively compile in the Back Channel Data Support feature.
See section Back Channel Data Support on page 20 for a description of Back Channel Data Sup-
port.

5.3.6.11 MASTER_PROTOCOL

This configuration definition is used to select the Master radio protocol or Slave radio protocol. For
the bridge application, it should be defined.

5.3.6.12 PAYLOAD_LENGTH

This configuration definition is used to define the payload length. For the bridge application, it should
be defined as 8.

5.3.6.13 POWER_BIND

This configuration definition is used to selectively compile in Power Bind feature. When the Power
Bind feature is selected, the bridge enters the bind mode twice at power up. Each time the bridge will
stay in bind mode for 1.5 seconds, and if a device is in the bind mode during this time, the device will
be bound to this bridge.

5.3.6.14 KISS_BIND

This configuration definition is used to selectively compile in the Enhanced KissBind feature. See
section Enhanced KISSBind™ on page 18 for a description of Enhanced KissBind.

The bridge can be un-bound by holding the Bind button for 5 seconds. After being un-bound, the
bridge enters an infinite loop and the red LED is always on until it is unplugged from and plugged into
a host PC.

After being un-bound, the device bound flags are cleared, and the HIDs can be bound to this bridge
by KissBind.

5.3.6.15 RSSI_QUALIFY

This configuration definition is used to enable the RSSI qualification for the Enhanced KissBind.
Only if the RSSI reading is above KISS_BIND_RSSI_THRESHOLD, can the KissBind request/
response be accepted by the Bridge/Devices.

5.3.6.16 PROMISCUOUS_MODE

This configuration definition is used to enable the Promiscuous mode qualification for the Enhanced
KissBind. With this mode, multiple mice or keyboards can be bound to one bridge.

5.3.6.17 DAL_ENABLE

This configuration definition is used to enable Microsoft’s Direct Application Launch (DAL) feature.
When this feature is enabled, the DAL1 LED is turned on by holding the F11 key; the DAL2 LED is
turned on by holding the F12 key.

Direct Application Launch is a new feature that the Windows Vista operating system provides built-in
support, for a fast system startup experience. More information on this can be found on Microsoft’s
Windows Hardware Developer Central website (http://www.microsoft.com/whdc/system/vista/DirAp-
pLaunch.mspx).
86 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_86

Bridge
5.3.7 Platform and Architecture Portability
The bridge firmware was designed to use the hardware features of the PRoC LP such as USB.

Porting the code to another microprocessor architecture may require modification of the existing
code to support the different processor specific features.

5.3.8 Initialization
The initialization of the PRoC LP chip is done by code that is generated in boot.asm by the PSoC
Designer software. The module boot.asm calls main once the PRoC LP has been configured and ini-
tialized.

Main initializes the components of the bridge along with the radio modules. The bridge firmware
enters a loop to receive and handle radio packets and generate USB packets.

5.3.9 Wireless Protocol Data Payload
The RDK HID protocol has been optimized to reduce the ‘on time’ of the radio, which equates to
reduced power consumption on the LP devices. Refer to the RDK keyboard and RDK mouse sec-
tions for radio packet format details.

5.3.10 Suspend and Remote Wakeup
In order to meet the USBIF Compliance requirements regarding power consumption during suspend
state, the PRoC LP RDK bridge must reduce the over all power consumption to less than 500 µA if
Remote Wakeup is not enabled (Remote Wakeup is the device ability to wake up a suspended PC
with user’s input such as a key press, mouse movement, and others). Because the PRoC LP RDK is
not configured to wake up the suspended host PC, the entire bridge must go into deep sleep state to
conserve power. Only bus activity from the host PC can bring the bridge back to normal operation.

If Remote Wakeup is enabled, the bridge may draw up to 2.5 mA in suspend state. This requires that
the radio circuitry be off most of the time. It is necessary to periodically turn the radio on to sense
activity from the PRoC LP mouse or keyboard (and thereby know when to wake the host). The wake
up period is configurable and is set to 1 second (see Register OSC_CR0 setting). Increasing the
wakeup interrupt frequency results in a faster response to the user's wakeup events at the expense
of a slightly higher than average sleep current.

5.3.11 Interrupt Usage/Timing
The polling method is used for the Bind button.

Table 5-2. Bridge Average Icc in Suspend State

Parameter Icc Units
Bridge Average Suspend Power Consumption–REMOTE WAKE
UP ENABLED 1.44 mA

Bridge Average Suspend Power Consumption–REMOTE WAKE
UP DISABLED 0.3 mA
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 87

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_87

Bridge
5.3.12 Code Performance Analysis
A keyboard report processing is used to analyze the code performance. A typical keyboard report
processing contains the following steps:
■ The bridge receives the keyboard report packet and process the packet. This step takes 108 µs.
■ MCU calls function handle_keyboard_report() to format USB packet and load this packet into the

endpoint buffer. This function consumes 118 µs.

As a result, it takes 226 µs for the bridge to process a keyboard report.

5.4 USB Interface

5.4.1 USB Descriptors
The USB Descriptors can be viewed/edited with the USB Setup Wizard.
88 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_88

Bridge
5.4.1.1 Device/Config Descriptors

Figure 5-7. USB Device/Config Descriptors

5.4.1.2 Keyboard HID Report Descriptor

The keyboard HID report descriptor defines a Boot Protocol keyboard. This enables a PRoC LP
RDK keyboard with the PRoC LP RDK bridge to work on different BIOS versions that do not cor-
rectly support the USB Report Protocol. Only standard 101(104) keys are sent using this format over
endpoint 1.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 89

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_89

Bridge
Figure 5-8. Keyboard HID Report Descriptor (Endpoint 1)

5.4.1.3 Mouse/Keyboard HID Report Descriptor

The mouse/keyboard HID Report Descriptor uses report protocol format with a unique report ID for
each report. Mouse data uses Report ID 1. The mouse report include delta x, delta y, and scroll
wheel data.
90 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_90

Bridge
Figure 5-9. Mouse HID Report Descriptor (Report ID 1 – Endpoint 2)

Keyboard multimedia keys use Report ID 2.

Figure 5-10. Keyboard’s MM Keys HID Report Descriptor (Report ID 2 – Endpoint 2)
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 91

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_91

Bridge
Keyboard power keys use Report ID 3.

Figure 5-11. Keyboard’s Power Keys HID Report Descriptor (Report ID 3 – Endpoint 2)

Report ID 4 is used to send the mouse battery level and link quality report.

Figure 5-12. Mouse’s Battery/Link Quality Report Descriptor (Report ID 4 – Endpoint 2)
92 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_92

Bridge
Report ID 5 is used to send the keyboard battery level and link quality report.

Figure 5-13. Keyboard’s Battery/Link Quality Report Descriptor (Report ID 5–Endpoint 2)

5.4.2 Keyboard Report Format
The keyboard standard keys information is sent to the host PC via the data endpoint 1. The key-
board multimedia keys and power keys information is sent to the host PC via the data endpoint 2
using Report ID (the first byte in the report). The mouse uses Report ID 1. The keyboard multimedia
keys use Report ID 2. The keyboard power keys use Report ID 3. The formats of the keyboard report
are shown below:
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 93

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_93

Bridge
Figure 5-14. Keyboard Report Format

Figure 5-15. Multimedia and Power Keys Report Format

Right
GUI

Right
Alt

Right
Ctrl

Right
Shift

Left
Alt

Left
GUI

Left
Ctrl

Left
Shift

Reserved

Standard Key 1

Standard Key 2

Standard Key 3

Standard Key 5

Standard Key 4

Standard Key 6

Keyboard Endpoint (EP1)

Multimedia Key

Multimedia Key

Power Key

Power Key

Mouse Endpoint (EP2) Mouse Endpoint (EP2)

Report ID 2 Report ID 3
94 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_94

Bridge
5.4.3 Mouse Report Format
The mouse data is sent over the data endpoint 2 using Report ID 1. The format of the mouse report
is shown below:

Figure 5-16. Mouse Report Format

5.4.4 Battery Level and Link Quality Reports
The PRoC LP bridge implements a mechanism to report the radio parameters of attached HID
devices via the USB control endpoint. The code for this functionality can be found in the user custom
code section of the User Module source file usb_1_cls_hid.asm.

The RadioParams HID report is a vendor-defined HID report for communicating several radio
parameters of the PRoC LP HID devices.

The HID Report Page is defined as:

Cypress WirelessUSB™ HID RadioParams Report Page (0xFF01–Vendor Defined)

Table 5-3. USB Report Usage IDs

Usage ID Usage Name
0x00 Undefined

0x01 WirelessUSB keyboard

0x 02 WirelessUSB mouse

0x03-0x1F RESERVED

0x 20 Battery Level

0x 21 WirelessUSB Channel

0x 22 WirelessUSB PN Code

0x 23 Corrupt Packets

0x 24 Packets Transferred

Mouse Endpoint (EP2)

X

Y

Unused Middle
Button

Right
Button

Left
Button

Z Wheel

Report ID 1
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 95

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_95

Bridge
The RadioParams Report is 8 bytes long and has the 6 data fields listed in Table 5-4.

5.4.4.1 Requesting a New Battery Reading

When the Bridge receives a control endpoint request from the host with the following parameters, it
returns an 8-byte RadioParams report over the control endpoint. An attached LP device sends an
updated battery report whenever a reconnect or a change in the battery level occurs.

Control endpoint request for new battery reading.

5.4.4.2 Obtaining the RadioParams Report

When the bridge receives, from the host, a control endpoint request with the parameters listed on
Table 5-6, it returns an 8-byte RadioParams report over the control endpoint.

Control endpoint request for RadioParams report are listed.

When the bridge receives the Get Report control request code, it returns a RadioParams report and
then resets the Packets Transferred parameter for the specified device to zero.

The Link Quality value is updated whenever the bridge receives a radio packet from the wireless
device.

Battery Level is only updated when the device sends an updated battery level report.

At startup, the Battery Level, Corrupt Packets and Packets Transferred are initialized to zero.

Table 5-4. USB Report Format

Byte Use Range
0 Report ID # 0x04

1 Battery Level 0 – 0x0A

2 Channel # 0 – 0x4D

3 PN Code 0 – 0x30

4-5 Corrupt Packets 0 – 0xFFFF

6-7 Packets Transferred 0 – 0xFFFF

Table 5-5. USB Set Report

Value
bmRequestType 0x21 (To Device, Type = Class, Recipient = Interface)

Request Code 0x09 (Set Report)
wValue 0x0304 (Feature Report, ReportID = 4)

wIndex 0x0000 = Kbd, 0x0001 = mouse

Table 5-6. USB Get Report

Value
bmRequestType 0xA1 (From Device, Type = Class, Recipient = Interface)

Request Code 0x01 (Get Report)
wValue 0x0304 (Feature Report, ReportID = 4)

wIndex 0x0000 = Kbd, 0x0001 = mouse
96 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_96

Bridge
5.4.5 Example USB Bus Analyzer (CATC) Traces
Figure 5-17 below shows the USB data transmissions between the bridge and the host PC captured
with the USB CATC Bus Analyzer. In this example, the Right Shift + ‘g’, ‘h’ keys were typed followed
by the ‘Volume Up’, ‘Volume Down’ keys. Note the keyboard regular key reports are sent to the PC
via the endpoint 1 while the Multimedia key reports are sent via the endpoint 2 with Report ID 2.

Figure 5-17. Example keyboard CATC Trace (Standard and MM Keys)

Modifier Byte.
Right Shift Key Down

“g” Key code.
Key Down

“h” Key code.
Key Down

“h” Key Up

“g” Key Up

Keyboard EP (EP1)

Endpoint 2, Report ID 2 =
Multimedia keys

“Volume + ”
Key Down

“Volume + ”
Key Up
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 97

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_97

Bridge
Figure 5-18 below shows the mouse data being transferred between the bridge and the host PC.
The first part of the trace shows the mouse data when the left button was pressed and held down as
the mouse was moved, and then the left button was released. The second part of the trace shows
the Z-wheel being moved down and up.

Figure 5-18. Example Mouse CATC Trace

Mouse Endpoint
(EP2)

Report ID 1 No Button Click

X Delta Y Delta

Left Button Click

Z Wheel Down

Z Wheel Up
98 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_98

Bridge
Figure 5-19 shows the Sleep key being pressed. Note the power key reports are sent via endpoint 2
and Report ID 3.

Figure 5-19. Example Keyboard CATC Trace (Power Key)

Figure 5-20 below shows the Get_Report requests used to retrieve the keyboard and mouse battery
level and link quality information. Note the data transfers occurred on the control endpoint,
endpoint 0, and Report ID were used to differentiate keyboard and mouse requests.

Figure 5-20. CATC Trace of Battery and Link Quality Data Requests

Key Up

Key CodeReport ID 3 =
Power Key

Keyboard’s Battery and Link
Quality Request Using Report ID 5

Mouse’s Battery and Link Quality
Request Using Report ID 4
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 99

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_99

Bridge
5.5 Development and Debug Environment
Information on the tools required and tips on using those tools are presented in this section.

5.5.1 Tools
See the CY4672 Getting Started Guide for a list of tools required to build and debug the bridge appli-
cation.

Figure 5-21. RDK Bridge with POD Installed

5.5.2 Tips and Tricks
A few of ways for working with the kit are the following.

M8C Sleep
When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of the
sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to synchroni-
zation issues between the OCD part and the emulator.

Watchdog Timer
The watchdog timer is enabled for the RDK operation, but may be disable for debug purposes.

POD Power
On the Project Settings->Debugger window select ‘Pod uses external power only’ when connected
to USB. The other option is to disconnect the VBUS signal on the PCB.
100 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_100

6. Manufacturing Test Support, MTK
6.1 Introduction
The Manufacturing Test Kit (MTK) provides production line test support in addition to providing FCC
certification tests. This section provides a description of the Tester serial protocol, the RF protocol
between the MTK Tester and the MTK Device-Under-Test (DUT) and a brief description of porting
the MTK DUT code to different platforms.

Refer to the Manufacturing Test Kit User’s Guide for instructions on operating the MTK Tester.

6.2 MTK Block Diagram

Figure 6-1. Block Diagram

6.3 MTK Serial Protocol
The MTK Tester implements a text-based protocol over an RS232 serial port to provide both a con-
figurable standard test and script-based testing.

All commands listed under the standard test set a configuration value that is stored in non-volatile
storage. All remaining serial commands only affect the current setting and are not stored (reset
across power cycles). Commands are not case sensitive. All commands are of the form <command>
space <command parameter>. For example ‘TC 20’. Table 6-1 on page 102 describes the serial port
protocol in the PC to tester direction.

 PC (Optional after
initial MTK Test
configuration)

MTK Tester MTK DUT

Serial Cable
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 101

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_101

Manufacturing Test Support, MTK
Every serial command issued by the PC is returned with a response once the command is complete.
The valid responses are shown in Table 6-2.

All serial commands must end in either a carriage return or carriage return and line feed. All
responses end with a carriage return and linefeed.

The serial port settings for the MTK Tester are shown in Table 6-3 on page 103. Neither software nor
hardware handshake is supported.

Table 6-1. Serial Command Protocol

Command Command Description
ST START STANDARD TEST

St
an

da
rd

 T
es

t P
ar

am
et

er
s

CL <power level> CONFIGURE POWER LEVEL (0-7)
PN <PN code> CONFIGURE PN CODE INDEX (0-7)
TT <tx error threshold> CONFIGURE TX ERROR THRESHOLD (0-65535) units of bit errors
RT <rx error threshold> CONFIGURE RX ERROR THRESHOLD (0-65535) units of bit errors
C1 <channel> CONFIGURE CHANNEL (0-77)
C2 <channel> CONFIGURE SECOND CHANNEL (0-77)
C3 <channel> CONFIGURE THIRD CHANNEL (0-77)
CB <# of bytes> CONFIGURE NUMBER OF BYTES/PACKET PAYLOAD (0-15)
CP <# of packets> CONFIGURE NUMBER OF PACKETS (0-255)

TC <time> TRANSMIT CARRIER (0-255)
TR <time> TRANSMIT RANDOM (0-255)

SC <channel> <PN code>
<power level> <correlator threshold>

SET COMMUNICATION (0-77) (0-7) (0-7) (0-16)
Note The device transmits on <channel> + 2.
For example, 2=2.402 GHz

PD <packet data> SET PACKET DATA (ASCII representation of hexadecimal numbers
without any prefix, i.e. 5A 34 CB)

CA <crystal adjust> SET CRYSTAL FREQUENCY ADJUST VALUE (0-63)
RE RESTORE NVRAM DEFAULTS
CS SHOW CURRENT CONFIGURATION
HE SHOW HELP MENU

Table 6-2. Serial Response Protocol

REPORT REPORT DESCRIPTION
OK COMMAND COMPLETE
CE COMMAND ERROR
TE <transmit error count> TX ERROR COUNT (units of bit errors)
RE <receive error count> RX ERROR COUNT (units of bit errors)
102 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_102

Manufacturing Test Support, MTK
6.4 MTK RF Protocol
Command packets received by the Device-Under-Test (DUT) are ‘echoed’ with the addition of an
added byte that contains the count of invalid bits for the received packet. Extra bytes in packets that
are larger than what the DUT can support are ignored. Commands other than ‘Echo Packet’ are only
‘echoed’ and executed if the number of invalid bits are zero.

The RF command packets exchanged between the MTK Tester and the MTK DUT contain two
bytes. The first byte contains the command type and the subsequent bytes contain the parameter
values as shown in Table 6-4.

The ‘Transmit carrier’ and ‘Transmit random pattern’ test mode can be conditionally compiled with
the define MFG_TX_MODES.

6.5 MTK DUT Source Code Porting
The RDK keyboard, bridge and mouse use the C source files mfgtest.c and mfgtest.h. Select the
appropriate source files for the target platform as a starting point. Make code changes as necessary
to work in your environment.

6.6 Accessing MTK in the DUT
Mouse: Apply a jumper across the ISSP header pins 4 and 5, and install the batteries.

Keyboard: Same as mouse.

Bridge: Press the Bind button while plugging it into the USB port. The LED’s should blink.

Table 6-3. Serial Port Parameter Settings

Serial Port Parameter Setting
Baud Rate 9600
Parity None
Number of Data Bits 8
Number of Stop Bits 1

Table 6-4. RF Commands

Description Command Parameter
Echo Packet 0x00 N/A
Set New Configuration 0x61 Channel (0-77)

PN code index (0-7)
PA (0-7)
Correlator Threshold (0-16)

Transmit carrier 0x66 Time in seconds (0-255)
Note A zero runs the test continuously until a reset.

Transmit random pattern 0xA3 Time in seconds (0-255)
Note A zero runs the test continuously until a reset.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 103

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_103

Manufacturing Test Support, MTK
104 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_104

7. Regulatory Testing Results
7.1 Introduction
The PRoC™ LP RDK leverages the regulatory work done for the CY4636 RDK. The CY4636 LP
mouse was tested in a certified lab and meets FCC part 15, Subpart B, Title 47 CFR–Unintentional
radiators, FCC Part 15 Subpart C–Intentional radiators, and Industry Canada RSS-Gen. The follow-
ing table outlines the results of the testing.

Testing for the keyboard and bridge is expected in the near future.

Table 7-1. EMC Test Results

Test Parameter FCC Limit Measured Value Margin
Spurious Radiated Emissions 54 dBuV/m(Av) 50.5 dBuV/m -3.5 dB
Spurious Conducted Emissions -20 dBc -31.9 dBc 11.9 dB
Power Spectral Density 8 cBm/3 kHz -9.0 dBm/3 kHz 17.0 dB
Output Power 30 dBm 2.3 mW 26.0 dB
Occupied Bandwidth >500 kHz 960 kHz 460 kHz
Conducted Band Edge Compliance 20 dB below fundamental -27.0 dBc 7.0 dB
Radiated Band Edge Compliance at
2482 Mhz

54 dBuV/m(Av) 51.7 dBuV/m -2.3 dB

Industry Canada limit
Receiver Radiated Emissions 46 dBuV/m(QP) 35.4 dBuV/m -10.6 dB
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 105

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_105

Regulatory Testing Results
106 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_106

8. Power Considerations
8.1 RDK Keyboard

8.1.1 Usage Model
The following usage model are considered for the RDK keyboard.
■ 4 hours per day of 6 keystrokes per second, 5 days per week.
■ 24 hours per day with no activity, 2 days per week.
■ A packet is transmitted on both key-up and key-down events.
■ A ‘keep alive’ is transmitted for each key-down event.

8.1.2 Current Measurements
Per the keyboard usage model, there are 6 keystrokes per second in the active state, and every key-
stroke includes one ‘down key’ packet, one ‘up key’ packet and one ‘keep alive’ packet. The test
mode firmware only sends out one ‘down key’ packet and one ‘up key’ packet for each keystroke.
Therefore, we need to set the typing rate to 8 keystrokes per second in test mode in order to con-
sume the equivalent power of the usage model. It is accomplished by changing the
KEYBOARD_TEST_MODE_PERIOD define in the config.h file to 50.

In this measurement, the Back Channel Support is not enabled. If it is enabled, the Icc for the active
state will be higher.

The following is the results of PRoC™ LP RDK keyboard current measurement:

Table 8-1. Keyboard Current Measurement

Operation Mode
Icc (mA) with

Supply Voltage =
2.5 V

Icc (mA) with
Supply Voltage =

2.8 V

Average Icc
(mA)

Active mode–Place the keyboard in test mode “the
quick brown fox …” and set the keystroke rate to 8
character per second.

0.96 0.82 0.89

Idle mode–A keyboard is in its normal power on
state and connected to the bridge with no keys
pressed.

0.040 0.040 0.040

Not connected mode–Type the keyboard. 20.3 16.9 18.6

Not connected mode–No typing. Transition to
idle mode.

Transition to
idle mode.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 107

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_107

Power Considerations
8.1.3 Battery Life Calculations
The following table shows the times spent in each state by the RDK keyboard usage model. By sub-
stituting the current measurements in section Current Measurements on page 107, the overall aver-
age Icc for RDK keyboard can be calculated.

The RDK keyboard uses two AA battery cells and enables the PMU function. Therefore, it is able to
access approximately a 2850-mAh battery capacity, which yields a battery life estimate of 841 days.

8.2 RDK Mouse

8.2.1 Usage Model
The following usage model are considered for the RDK mouse.
■ 1 hour per day with the 3030/3040 sensor in ‘active’ state.
■ 2 hours per day with the 3030/3040 sensor in ‘rest1’ state.
■ 2 hours per day with the 3030/3040 sensor in ‘rest2’ state.
■ 19 hours per day with the 3030/3040 sensor in ‘rest3’ state.
■ 5 days per week as above, 2 days per week 24 hours in ‘rest3’ state.

Table 8-2. Mouse Current Measurement

Mode Hrs/day Days Average Icc (mA) Charge (mAh)

Week day
Active 4 5 0.89 17.8
Idle 20 5 0.04 4

Weekend Idle 24 2 0.04 1.92

Charge Per Week (mAh) 23.72
Overall Average Icc (mA) 0.141
108 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_108

Power Considerations
8.2.2 Current Measurements

The following is the results of RDK mouse current measurement:

8.2.3 Battery Life Calculations
The following table shows the times spent in each state by the RDK mouse usage model. By substi-
tuting the current measurements in section Current Measurements, the overall average Icc for RDK
mouse can be calculated.

The RDK mouse uses two AA battery cells and enables the PMU function. Therefore, it is able to
access approximately a 2850-mAh battery capacity, which yields a battery life estimate of 292 days.

Table 8-3. RDK keyboard Power Consumption

Operation Mode
Icc (mA) with

Supply Voltage =
2.5V

Icc (mA) with
Supply Voltage =

2.8V

Average Icc
(mA)

Active mode–Move the mouse in a circle on white
paper. 8 6.9 7.5

Rest1 mode–Allow the mouse to sit idle for 1 sec-
ond after being in the active state. 2.03 1.81 1.92

Rest2 mode–Allow the mouse to sit idle for 10 sec-
onds after being in the active state. 0.16 0.15 0.16

Rest3 mode–Allow the mouse to sit idle for 10 min-
utes after being in the active state. 0.071 0.070 0.071

Not connected mode–Briefcase Mode. 0.05 0.04 0.05

Table 8-4. RDK Mouse Power Consumption

Mode Hrs/day Days Average Icc (mA) Charge (mAh)

Week day

Active 1 5 7.5 37.5
Rest1 2 5 1.92 19.2
Rest2 2 5 0.16 1.6
Rest3 19 5 0.07 6.65

Weekend Rest3 24 2 0.07 3.36

Charge Per Week (mAh) 68.3
Overall Average Icc (mA) 0.407
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 109

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_109

Power Considerations
110 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_110

9. Software Guide
9.1 Introduction
This section describes the software source code modules used in order to communicate with the
PRoC™ LP bridge HID device to obtain the current radio parameters for the attached Wire-
lessUSB™ LP devices. It does not cover the details of the Microsoft Foundation Class (MFC) Library
or the HID Library that contains standard system-supplied routines that user-mode applications use
to communicate with USB devices that comply with the USB HID Standard. Refer to the Microsoft
Visual C++ documentation for more on MFC and HID Class concepts, in addition to the Device Class
Definition for Human Interface Devices (HID) defined by the USB Implementers Forum, Inc.
(http://www.usb.org/developers/hidpage).

9.2 Software Code Modules
There are three main modules contained in the WirelessUSB Software:
■ USB HID API module–generic class interface to HID Class compliant devices
■ System Tray module–generic class to create and control an icon on the system tray
■ WirelessUSB System Tray Application module–main system tray application module

The following sections describe the software module contents.

9.2.1 USB HID API module
The USB HID API module defines two classes, CHidDevice and CHidManager. The CHidDevice
class is the primary interface to a HID device, while the CHidManager class keeps track of the arrival
and removal of HID devices, along with notification to the application of such events. The building
blocks for the USB HID API module was derived from the HCLIENT sample code provided in the
Windows DDK. This module was designed to provide a generic interface to any HID Class compliant
device and is not expected to require any modification, however all source code is provided for refer-
ence.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 111

[+] Feedback

http://www.usb.org/developers/hidpage
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_111

Software Guide
9.2.1.1 CHidDevice Class Methods

Table 9-1. CHidDeviceClass Methods

Method Type Description
OpenHidDevice() Public This method sets appropriate access rights, attempts to open a han-

dle to the HID device, obtains the top collection data, and makes a
call to setup input, output, and feature data buffers.

CloseHidDevice() Public This method closes the HID device handle, un-registers the HID
device notification, and frees pre-parsed data and data/report buffers.

RegisterHidDevice() Public This method registers the HID device handle for event notification.
IsOpen() Public This method is used to report if a valid handle is open to the HID

device.
IsOpenForRead() Public This method is used to report if the handle open to the HID device

allows for read access.
IsOpenForWrite() Public This method is used to report if the handle open to the HID device

allows for write access.
IsOpenOverlapped() Public This method is used to report if the handle open to the HID device

allows for overlapped I/O.
IsOpenExclusive() Public This method is used to report if the handle open to the HID device is

setup for exclusive access.
GetHandle() Public This method returns the handle to the HID device.
Read() Public This method reads an input report from the HID device, performs a

validity check, and unpacks the report data.
Write() Public This method is used for every report ID, packs a report buffer and

writes the report data to the HID device.
GetFeature() Public This method obtains the feature report from each report ID exposed

by the HID device.
SetFeature() Public This method sends a feature report for each report ID exposed by the

HID device.
UnpackReport() Public This method scans through the HID report and if it can, fills in any

data in the structures.
PackReport() Public This method packages the HID report based on the data in the struc-

tures.
GetManufacturerString() Public This method obtains the USB manufacturer string from the HID

device.
GetProductString() Public This method obtains the USB product string from the HID device.
GetSerialNumberString() Public This method obtains the USB serial number string from the HID

device.
RegGetValue() Public This method attempts to get a registry value from the registry key

where the device-specific configuration information for the HID device
is stored.

RegSetValue() Public This method attempts to set a registry value in the registry key where
the device-specific configuration information for the HID device is
stored.

SetupHidDevice() Protected This method sets up HID Input, Output and Feature data buffers used
to simplify communication with HID devices.

ValidateHidDevice() Protected This method simply returns TRUE, it is expected that this routine will
be overridden by the application where the actual validation will be
handled.
112 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_112

Software Guide
9.2.1.2 CHidManager Class Methods

Table 9-2. CHidManagerClass Methods

Method Type Description
Create() Public This method creates an invisible window and uses the returned win-

dow handle to register for HID device notification events, then it cre-
ates a list of existing HID devices that will be maintained by the HID
manager.

IsHidDevicePresent() Public This method attempts to open a handle to the HID device to deter-
mine if it is present (or not) and returns the result.

RefreshHidDevices() Public This method validates that all HID devices in the list are still present,
removes those from the list that are currently not present, scans the
list of all existing HID devices present, and then attempts to add the
existing HID devices to the list.

GetDeviceCount() Public This method returns the number of connected devices.
GetFirstHidDevice() Public This method returns a pointer to the first HID device in the list.
GetNextHidDevice() Public This method returns a pointer to the next HID device in the list.
GetCurrentHidDevice() Public This method returns a pointer to the current HID device in the list.
GetHidDeviceWithPath() Public This method scans the current list of HID devices and returns a

pointer to the HID device that matches the device path provided.
GetHidDevice
WithHandle()

Public This method scans the current list of HID devices and returns a
pointer to the HID device that matches the device handle provided.

HidDeviceAlreadyExists() Public This method determines if the HID device already exists in the list
AddHidDevice() Public This method checks if the provided HID device already exists, and if

not, adds the new HID device to the end of the list, increments the
HID device counter, and call the HID callback function to indicate a
new HID device was added.

RemoveHidDevice() Public This method closes the outstanding handle to the HID device, calls
the HID callback function to indicate that the HID device is being
removed, removes the HID device from the list, and deletes the HID
device.

RemoveAllHidDevices() Public This method scans though all HID devices in the list and removes
them.

CreateUniqueDeviceID() Public This method attempts to create and maintain a unique ID for the
associated HID device.

FreeUniqueDeviceID() Public This method frees the specified unique ID.
NewHidDevice() Protected This method allocates memory for a new HID device structure
DeleteHidDevice() Protected This method deletes previously allocated memory for an existing HID

device structure.
RegisterHidNotification() Protected This method registers for notification of events for all HID devices and

calls the HID callback function to indicate registration was completed.
HidDeviceArrival() Protected This method makes sure the HID device does not already exist in the

list, and then creates a new HID device, opens a handle to the
device, adds the new HID device to the list, and registers event notifi-
cation for this new HID device.

HidDeviceQuery
Removal()

Protected This method readies the HID device for removal by making sure the
handle is closed.

HidDeviceRemoval() Protected This method removes the HID device.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 113

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_113

Software Guide
9.2.2 System Tray Module
The System Tray module defines the CCySysTray class which provides the interface to the system
tray for the application. This module is not expected to require any modification, however all source
code is provided for reference.

9.2.2.1 CCySysTray Class Methods

Table 9-3. CCySysTray Methods

Method Type Description
Create() Public This method creates an invisible window and sets up the system tray

icon (if needed).
SetIcon() Public This method sets (or replaces) the icon displayed on the system tray.
RemoveIcon() Public This method removes the icon from the system tray.
SetToolTip() Public This method sets the tool tip to be displayed on the system tray.
SetMenuItem() Public This method sets the default menu item executed when the icon is

double-clicked on the system tray.
IsHidden() Public This method is used to determine if the system tray icon is hidden.
ShowBalloonTip() Public This method displays a balloon style tip message (only supported on

W2K or higher).
OnTrayNotification() Public This method processes events that occur to the icon in the system

tray.
OnTaskbarCreated() Protected This method is called when the system tray is being restarted (for

example, if Explorer crashes).
WindowProc() Protected This method overrides the default WindowProc to call OnTrayNotifi-

cation for messages targeting the system tray icon or OnTaskbarCre-
ated if the system tray is being restarted.
114 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_114

Software Guide
9.2.3 WirelessUSB System Tray Application Module
The WirelessUSB System Tray module is the main system tray application. This module places the
icon on the system tray bar, manages the HID devices, displays pop up messages, and controls the
WirelessUSB Status Property Sheet. Additionally, via command-line parameters, this module can
enable and disable the system tray application from running at startup.

9.2.3.1 CWirelessUSBTrayApp Class Methods

The CWirelessUSBTrayApp class performs application initialization and removal, in addition it
parses command-line parameters used to enable or disable the system tray application from being
run at startup.

Table 9-4. CWirelessUSBTrayApp Methods

Method Type Description
InitInstance() Public This method performs basic initialization and checks for any com-

mand-line parameters. If command-line parameters are found, it
takes the appropriate action and ends the application; if no com-
mand-line parameters are found it checks to make sure the applica-
tion is not currently running and, if not, proceeds to run the system
tray application.

ExitInstance() Public This method performs some standard cleanup before the application
ends.

RegisterAutoLoader() Protected This method registers the application (itself) to always be run at star-
tup and optionally launches itself as well.

UnregisterAudoLoader() Protected This method un-registers the application (itself) to prevent running at
startup and optionally ends itself from running.

AutoLoadExe() Protected This method launches the specified EXE application.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 115

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_115

Software Guide
9.2.3.2 CMainFrame Class Methods

The CMainFrame class is the Visual C++ generated file that is a derived frame-window class for the
system tray application's main frame window. This class has been modified to also perform the timer
based polling of the PRoC LP bridge HID device to obtain the radio parameters and display any
appropriate pop up messages. Additionally, this class also processes the command message to cre-
ate the WirelessUSB Status Property Sheet.

Table 9-5. CMainFrame Methods

Method Type Description
OnCreate() Public This method is called when a new window is created for this frame. It

sets up the HID Notification callback and device status property
sheet, initializes the HID manager, creates the system tray icon, sets
up the menu and tool tips. If any HID devices are present, it displays
the icon on the system tray and makes a call to start the timer.

HIDNotification() Public This method processes notifications of when an HID device is added
or removed from the list. It adds or removes property pages to the
wireless status page and adds or removes the icon from the system
tray when the first or last HID devices is added or removed.

OnStartTimer() Public This method starts the timer based on the hard-coded poll timer (cur-
rently set to once every 5 seconds).

OnStopTimer() Public This method stops the timer.
OnTimer() Public This method is the timer routine that is called when the timer expires.

It loops through all the HID devices in the list and updates their status
values then restarts the timer; also, it occasionally requests an update
in the battery level, currently set to once every hour.

OnDestroy() Public This method is called when the frame window is destroyed. It stops
the timer, removes the property sheet (if displayed), and removes the
icon from the system tray.

OnAppWireless
USBStatus()

Public This method displays the wireless status page, if it is not already dis-
played.
116 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_116

Software Guide
9.2.3.3 CWirelessUSBStatusPropertyPage Class Methods

The CWirelessUSBStatusPropertyPage class is the Visual C++ generated file that implements the
WirelessUSB Device Status Property Page, a unique property page is created for each WirelessUSB
device enumerated.

9.2.3.4 CWirelessUSBStatusPropertySheet Class Methods

The CWirelessUSBStatusPropertySheet class is the Visual C++ generated file that implements the
WirelessUSB Status Property Sheet, which generates a unique WirelessUSB Device Status Prop-
erty Page for each WirelessUSB device enumerated.

Table 9-6. CWirelessUSBStatusPropertyPage Methods

Method Type Description
OnInitDialog() Public This method initializes the wireless status page, reads the current

value of the Disable Warning Message check box from the registry,
and makes a call to start the timer.

OnDestroy() Public This method removes the wireless status page and stops the timer.
OnStartTimer() Public This method starts the timer for the wireless status page based on the

hard-coded poll timer (currently set to once ever 500 ms).
OnStopTimer() Public This method stops the timer for the wireless status page.
CommaStr() Public This method takes a numeric value and returns a CString representa-

tion of the number with commas added.
OnTimer() Public This method updates the HID device values displayed on the status

page then restarts the timer; also, it occasionally requests an update
in the battery level, currently set to once every 5 seconds while the
status page is displayed.

OnBnClickedWireless
USBDisableWarning
Message()

Public This method is called when the Disable Warning Messages check box
is changed. Base on the check box value, it either disables or enables
battery and signal strength warning messages for the specific HID
device. The updated value is then stored in the device-specific config-
uration information for the HID device.

Table 9-7. CWirelessUSBStatusPropertySheet Methods

Method Type Description
OnInitDialog() Public This method initializes the wireless status property sheet and adds a

property page for each HID device in the list.
OnBnClickedClose() Public This method ends the dialog box if the user selects the Close button.
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 117

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_117

Software Guide
9.2.3.5 CHidTrayDevice Class Methods

The CHidTrayDevice class is derived from the CHidDevice class and is the class used to interface
with WirelessUSB devices.

9.2.3.6 CHidTrayManager Class Methods

The CHidTrayManager class is derived from the CHidManager class and is used to manage Wire-
lessUSB devices.

9.3 Development Environment
The following tools are required to build and develop the Wireless USB Software application.
■ Microsoft Visual C++ .NET
■ Windows Driver Development Kit (DDK)

A Microsoft Windows based PC is used for tool execution.

The Microsoft Visual C++ .NET solution file can be found at the following location:

.\WirelessUSBSysTray\WirelessUSBTray.sln

Table 9-8. CHidTrayDevice Methods

Method Type Description
RequestNewUsageValues() Public This method sets up and issues a Set Feature request to the HID

device, which now simply requests the wireless device to provide
an update of its battery level the next time it communicates with the
USB bridge.

UpdateUsageValues() Public This method retrieves the latest usage values from the USB
bridge, which includes wireless channel, wireless PN code, last
reported battery level, and signal strength.

UpdateDeviceInfo() Public This method makes a call to update the HID device usage values
and displays a warning message (if enabled).

GetUsageIDValue() Public This method extracts the value of the provided Usage ID from the
feature data.

VerifyHidDevice() Public This method is called to verify that the HID device is one that
should be added to the list; right now this is done by making sure
the usage page reported is WIRELESSUSB_USAGEPAGE and
the usage reported is either
WIRELESSUSB_USAGE_KEYBOARD or
WIRELESSUSB_USAGE_MOUSE.

Table 9-9. CHidTrayManager Methods

Method Type Description
NewHidDevice() Protected This method creates a new HID device, initializes it, and adds it to the

list of existing HID devices.
DeleteHidDevice() Protected This method removes the HID device from the list and deletes the

HID device.
118 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_118

Appendix A. References
CY4672 Getting Started

PSoC Designer™ version 4.3 documentation

CY3631 Manufacturing Test Kit

Device Class Definition for Human Interface Devices (HID) (http://www.usb.org/developers/hidpage)

Avago ADNS-3040 Low Power Optical mouse Sensor Data Sheet

CYRF69103/213 PRoC™ LP Data Sheet

CYRF6936 WirelessUSB™ LP 2.4GHz Radio SoC Data Sheet
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 119

[+] Feedback

http://www.usb.org/developers/hidpage
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_119

120 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_120

Index
Numerics
1 millisecond interval timer user module 81

A
acronyms 10
advanced encryption standard 29

decrypt key 31
encrypt key 31

AES
See advanced encryption standard

AES encryption 30
application code 83
architecture

keyboard 51
AutoACK 14, 27
automatic acknowledgment 14

B
back channel

data support 20
transaction sequence 21

base channel 14
battery life calculations

keyboard 108
mouse 109

battery quality report descriptor 93
battery reading 96
bind and reconnect timing 26
bind ID 14
bind request packets 26
bridge

battery level and link quality reports 95
bind button 76
enCoRe II device configuration 78
firmware architecture 78
global configuration 80
hardware overview 75
master protocol 83
PRoC LP CYRF69213 part number 75
radio driver 83
RAM usage 78
RDK board 76
ROM usage 78
schematics 77
user modules 80
with USB adapter and PSoC MiniProg 77

button bind mode 17

C
channel selection algorithm 15
code performance analysis 88
common code logical grouping 82
connect request (HID) 24
connect response 27
connect response packet 24
conventions 10
CRC seed 14, 18

D
data mode 20
descriptors

battery quality report 93
keyboard HID report 89
mouse HID report 90
USB 88

design features
keyboard 51
mouse 33

development environment 118
Device Editor 78
device-under-test 103
documentation

acronyms 10
overview 9

DUT
See device-under-test

dynamic data rate 22
dynamic PA 22

E
EMC test results 105
error correction 14

F
firmware architecture

bridge 78
keyboard 56
mouse 36
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 121

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_121

Index
firmware architecture model 82
flash security 81

H
hardware

bridge overview 75
keyboard overview 51
mouse overview 33
RDK keyboard assembly 52

HID
See human interface devices

human interface devices 13

I
idle mode

HID only 17
initialization of the PRoC LP chip 87

K
keyboard

application code 61
architecture 51
code performance 71
common code 60
configuration options 51
critical test points 74
development environment 73
enCoRe II device configuration 56
firmware architecture 56
firmware architecture model 60
firmware source code modules 51
ghost key detection 70
hardware considerations 55
initialization 66
interrupt usage 70
LP generic report 66
matrix 55
modifying the keyboard matrix 72
platform and architecture portability 65
power keys 92
power keys report 68
report format 93
ROM/RAM usage 56
schematics 54
standard 101 keys report format 67
wireless protocol data payload 66

keyboard CATC trace 97
keyboard HID report descriptor 89, 90
KISSBind 18
KISSBind transaction sequence 19

L
LED

green 77
red 77

low voltage interrupt 45

M
manufacturing ID 14
manufacturing test kit 101

block diagram 101
serial protocol 101

mfgtest.c 103
mfgtest.h 103
MID

See manufacturing ID
mode

button bind 17
data 20
idle 17
ping 16
reconnect 17

mouse
application code 42
assembly 33
bind button 34
code performance analysis 49
common code 40
critical test points 50
development environment 49
firmware architecture 36
firmware architecture model 39
hardware block diagram 35
hardware overview 33
initialization 47
interrupt usage 48
low voltage interrupt 45
platform and architecture portability 47
PRoC LP device configuration 36
report format 95
ROM/RAM usage 36
schematics 35
wireless protocol data payload 47

mouse CATC trace 98
mouse HID report descriptor 90
MTK

See manufacturing test kit
MTK RF protocol 103
multimedia and power keys report format 94

N
network ID 14

O
overview 9

P
packet structures 23

bind response packet 24
bind/KISSBind request packet 23
122 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_122

Index
connect request 24
connect response packet (bridge) 24
ping packet (bridge) 25

ping mode
bridge only 16

platform and architecture portability 87
PN code

See pseudo noise codes
power considerations

RDK keyboard 107
RDK mouse 108

PRoC LP bridge architecture 75
PRoC LP keyboard 51
protocol

MTK RF 103
serial command 102
serial response 102

protocol modes
master 15
slave 16

pseudo noise codes 13, 14
PSoC Designer generated files

MSTIMER.asm 83
USB_1.inc 82
USB_1_cls_hid.asm 83

R
radio channel management 13
RadioParams report 96
RDK bridge board 76
RDK bridge with POD installed 100
receive signal strength indicator 16
reconnect mode 17
regulatory testing results 105
remote wakeup 87
RF commands 103
RSSI

See receive signal strength indicator

S
serial command protocol 102
serial port parameter settings 103
serial response protocol 102
signature byte 28
software

CCySysTray methods 114
CHidDeviceClass methods 112
CHidManagerClass methods 113
CHidTrayDevice methods 118
CHidTrayManager methods 118
CMainFrame methods 116
code modules 111
CWirelessUSBStatusPropertyPage methods 117
CWirelessUSBStatusPropertySheet methods 117
CWirelessUSBTrayApp methods 115
USB HID API module 111

software source code 111

SPI master user module 81
suspend 87
system tray module 114

T
TEA

features 29
TEA encryption

See tiny encryption algorithm
tiny encryption algorithm 29
transaction sequence

back channel 21
KISSBind 19

U
USB descriptors 88
USB device user module 81
USB programming adapter 76
USB report format 96

W
wireless protocol data payload 87
WirelessUSB 2-way system 13
WirelessUSB system tray module 115
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 123

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_123

Index
124 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_124

Revision History

Document Revision History

Document Title: CY4672 Reference Design Kit Guide
Document Number:

Revision ECN# Issue Date Origin of
Change Description of Change

1.0 10/3/06 ARI New document. The Beta copy of this manual was in Word. Converted to Framemaker template, added new
material.

1.1 12/19/06 ARI Replaced figures 3-5, 4-6, 5-4, 5-5, 5-8, and 5-21. Replace tables 8-1, 8-2, 8-3, and 8-4.Made other edits
per NDX

1.2 01/02/07 ARI Added Figure 3.7 “Pod Used for Debugging RDK Mouse.” Changed “Wireless enCoRe II” to “enCoRe II LV”
in Chapter 4.

1.3 03/14/07 ARI Took out reference to the left mouse button in section 3.3.6.14.

** 07/31/07 ARI
This guide is new to the specifications system; it existed as an uncontrolled document.
Added section 2.2.9 Dynamic Data Rate and Dynamic PA. Changed WirelessUSB Protocol 2.1 to Wire-
lessUSB Protocol 2.2.

Distribution: External/Public
Posting:
CY4672 Reference Design Guide, Document # 001-16968 Revision ** 125

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_125

126 CY4672 Reference Design Guide, Document # 001-16968 Revision **

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_cy4672_proc_tm__lp_reference_design_kit__version_1_0__b__22_pdf_p_126

	CY4672 Reference Design Guide
	Contents
	1. Introduction
	1.1 Scope
	1.2 Chapter Overviews
	1.3 Support
	1.4 Conventions
	1.4.1 Definitions
	1.4.2 Acronyms

	2. WirelessUSB™ Protocol 2.2
	2.1 General Overview
	2.1.1 Radio Channel Management
	2.1.2 Pseudo Noise Codes
	2.1.3 Chip Error Correction
	2.1.4 Automatic Acknowledgment (AutoACK)
	2.1.5 Network ID
	2.1.6 Manufacturing ID
	2.1.7 Channel Selection Algorithm

	2.2 Protocol Modes
	2.2.1 Ping Mode (Bridge Only)
	2.2.2 Idle Mode (HID only)
	2.2.3 Reconnect Mode (HID only)
	2.2.4 Button Bind Mode
	2.2.5 Enhanced KISSBind™
	2.2.6 Unbind
	2.2.7 Data Mode
	2.2.8 Back Channel Data Support
	2.2.9 Dynamic Data Rate and Dynamic PA

	2.3 Packet Structures
	2.3.1 Bind/KISSBind Request Packet (HID)
	2.3.2 Bind Response Packet (Bridge)
	2.3.3 Connect Request (HID)
	2.3.4 Connect Response Packet (Bridge)
	2.3.5 Ping Packet (Bridge)
	2.3.6 Data Packet/Back Channel Data Packet (Bridge and HID)

	2.4 Bind and Reconnect Timing
	2.5 Signature Byte
	2.6 Encryption
	2.6.1 TEA Encryption
	2.6.1.1 TEA Key Management over WirelessUSB

	2.6.2 AES Encryption
	2.6.2.1 AES Key Management

	2.6.3 Encryption and Power Consumption Trade Off

	3. Mouse
	3.1 Introduction
	3.1.1 Design Features

	3.2 Hardware Overview
	3.2.1 RDK Mouse Assembly
	3.2.2 Hardware Block Diagram
	3.2.3 Schematics
	3.2.4 Hardware Considerations

	3.3 Firmware Architecture
	3.3.1 ROM/RAM Usage
	3.3.2 PRoC LP Device Configuration
	3.3.2.1 Global Configuration
	3.3.2.1.1 CPU Clock
	3.3.2.1.2 CPU Clock / N
	3.3.2.1.3 Timer Clock
	3.3.2.1.4 Timer Clock /N
	3.3.2.1.5 FreeRun Timer
	3.3.2.1.6 FreeRun Timer /N
	3.3.2.1.7 Capture Edge
	3.3.2.1.8 8 Bit Capture Prescaler
	3.3.2.1.9 CLKOUT Source
	3.3.2.1.10 Low V Detect
	3.3.2.1.11 V Reset
	3.3.2.1.12 Watchdog Enable

	3.3.2.2 SPI Master User Module
	3.3.2.3 Programmable Interval Timer User Module
	3.3.2.4 Flash Security

	3.3.3 Model
	3.3.4 Common Code
	3.3.4.1 Generated Library Code
	3.3.4.1.1 Timer Interrupt Module

	3.3.4.2 Debounce Module
	3.3.4.3 SPI Module
	3.3.4.4 Radio Driver
	3.3.4.5 Protocol Module
	3.3.4.6 Flash Module
	3.3.4.7 Port Module
	3.3.4.8 Poll Module
	3.3.4.9 Timer Module
	3.3.4.10 ISR Module

	3.3.5 Application Code
	3.3.5.1 Mouse Module
	3.3.5.2 Optical Module
	3.3.5.3 Testmode Module
	3.3.5.4 Buttons Module
	3.3.5.5 Mfgtest Module
	3.3.5.6 Wheel Module
	3.3.5.7 Battery Module

	3.3.6 Configuration Options
	3.3.6.1 MOUSE_REPORT_IN_MS
	3.3.6.2 MOUSE_ACTIVE_MS
	3.3.6.3 MOUSE_DISCONNECTED_POLL_MS
	3.3.6.4 MOUSE_TX_TIMEOUT_MS
	3.3.6.5 MOUSE_CONNECT_ATTEMPT_TIMES
	3.3.6.6 PLATFORM_H
	3.3.6.7 MOUSE_800_NOT_400_CPI
	3.3.6.8 MOUSE_BATTERY_STATUS
	3.3.6.9 MOUSE_TEST_MODE
	3.3.6.10 MFG_TEST_CODE
	3.3.6.11 MFG_TX_MODES
	3.3.6.12 MASTER_PROTOCOL
	3.3.6.13 PAYLOAD_LENGTH
	3.3.6.14 KISS_BIND
	3.3.6.15 RSSI_QUALIFY
	3.3.6.16 AUTO_CONNECT

	3.3.7 Platform and Architecture Portability
	3.3.8 Initialization
	3.3.9 Wireless Protocol Data Payload
	3.3.9.1 Packet Format 1
	3.3.9.2 Packet Format 2
	3.3.9.3 Packet Format 3

	3.3.10 Interrupt usage and timing
	3.3.11 Code Performance Analysis

	3.4 Development Environment
	3.4.1 Tools
	3.4.2 Tips and Tricks
	3.4.2.1 M8C Sleep
	3.4.2.2 Watchdog Timer

	3.4.3 Critical Test Points

	4. Keyboard
	4.1 Introduction
	4.1.1 Design Features

	4.2 Hardware Overview
	4.2.1 RDK Keyboard Assembly
	4.2.2 Schematic
	4.2.3 Keyboard Matrix
	4.2.4 Hardware Considerations

	4.3 Firmware Architecture
	4.3.1 ROM/RAM usage
	4.3.2 enCoRe II Device Configuration
	4.3.2.1 Global Configuration
	4.3.2.2 SPI Master User Module
	4.3.2.3 Programmable Interval Timer User Module
	4.3.2.4 Flash Security

	4.3.3 Model
	4.3.4 Common Code
	4.3.4.1 Generated Library Code
	4.3.4.2 Radio Driver
	4.3.4.3 Protocol Module
	4.3.4.4 Flash Module
	4.3.4.5 ISR Module
	4.3.4.6 Timer Module

	4.3.5 Application Code
	4.3.5.1 Keyboard Module
	4.3.5.2 Mfgtest Module
	4.3.5.3 Battery Module
	4.3.5.4 Test Module
	4.3.5.5 Encrypt Module

	4.3.6 Configuration Options
	4.3.6.1 KEYBOARD_KEEP_ALIVE_TIMEOUT
	4.3.6.2 KEY_DOWN_DELAY_SAMPLE_PERIOD
	4.3.6.3 KEYBOARD_DEBOUNCE_COUNT
	4.3.6.4 KEYBOARD_MULTIMEDIA_SUPPORT
	4.3.6.5 KEYBOARD_TEST_MODES
	4.3.6.6 KEYBOARD_TEST_MODE_PERIOD
	4.3.6.7 PANGRAM_TEST_MODE
	4.3.6.8 KEYBOARD_BATTERY_VOLTAGE_SUPPORT
	4.3.6.9 LP_RDK_KEYBOARD_MATRIX
	4.3.6.10 KEYBOARD_TX_TIMEOUT
	4.3.6.11 TIMER_CAL
	4.3.6.12 ENCRYPT_TEA
	4.3.6.13 ENCRYPT_AES
	4.3.6.14 MFG_TEST_CODE
	4.3.6.15 MFG_ENTER_BY_PIN
	4.3.6.16 MFG_TX_MODES
	4.3.6.17 MOUSE_EMULATION_MODE
	4.3.6.18 BACK_CHANNEL_SUPPORT
	4.3.6.19 MASTER_PROTOCOL
	4.3.6.20 PAYLOAD_LENGTH
	4.3.6.21 KISS_BIND
	4.3.6.22 RSSI_QUALIFY
	4.3.6.23 PLATFORM_H

	4.3.7 Platform and Architecture Portability
	4.3.8 Initialization
	4.3.9 Wireless Protocol Data Payload
	4.3.9.1 Keyboard Application Report Formats
	4.3.9.1.1 Standard 101 Keys Report
	4.3.9.1.2 Multimedia Keys (Hot keys) Report
	4.3.9.1.3 Power Keys (Suspend/Sleep) Report
	4.3.9.1.4 Keep Alive Report
	4.3.9.1.5 Battery Voltage Level Report

	4.3.10 Ghost Key Detection
	4.3.11 Interrupt Usage / Timing
	4.3.12 Code Performance Analysis

	4.4 Modifying the Keyboard Matrix or Adding New Keys
	4.4.1 Modifying the Keyboard Matrix
	4.4.2 Adding New Keys

	4.5 Development Environment
	4.5.1 Tools
	4.5.2 Tips and Tricks
	4.5.2.1 M8C Sleep
	4.5.2.2 Watchdog Timer

	4.5.3 Critical Test Points

	5. Bridge
	5.1 Introduction
	5.1.1 Design Features

	5.2 Hardware Overview
	5.2.1 Bridge Photographs
	5.2.2 In-System Programming
	5.2.3 Schematics
	5.2.4 LED Usage

	5.3 Firmware Architecture
	5.3.1 ROM/RAM Usage
	5.3.2 PRoC LP Device Configuration
	5.3.2.1 Global Configuration
	5.3.2.2 SPI Master User Module
	5.3.2.3 USB Device User Module
	5.3.2.4 1 Millisecond Interval Timer User Module
	5.3.2.5 Flash Security

	5.3.3 Model
	5.3.4 Common Code
	5.3.4.1 PSoC Generated Library Code
	5.3.4.1.1 USB include (USB_1.inc)
	5.3.4.1.2 USB HID Class Module (USB_1_cls_hid.asm)
	5.3.4.1.3 1 Millisecond Interval Timer Interrupt Module (MSTIMER.asm)

	5.3.4.2 Flash
	5.3.4.3 Timer
	5.3.4.4 Radio Driver
	5.3.4.5 Master Protocol

	5.3.5 Application Code
	5.3.5.1 Bridge Module
	5.3.5.1.1 Check the USB Idle Timer
	5.3.5.1.2 Check the Received Packet
	5.3.5.1.3 Check the Bind Button
	5.3.5.1.4 Check the USB Suspend

	5.3.5.2 USB Module
	5.3.5.3 Mfgtest Module
	5.3.5.4 Encrypt Module

	5.3.6 Configuration Options
	5.3.6.1 MFG_TEST_CODE
	5.3.6.2 MFG_TX_MODES
	5.3.6.3 MFG_ENTER_BY_PIN
	5.3.6.4 MFG_ENTER_BY_BUTTON
	5.3.6.5 MFG_ENTER_BY_USBSE1
	5.3.6.6 ENCRYPT_TEA
	5.3.6.7 ENCRYPT_AES
	5.3.6.8 GREEN_LED_ON_TIME
	5.3.6.9 DOWNKEY_TIME_OUT
	5.3.6.10 BACK_CHANNEL_SUPPORT
	5.3.6.11 MASTER_PROTOCOL
	5.3.6.12 PAYLOAD_LENGTH
	5.3.6.13 POWER_BIND
	5.3.6.14 KISS_BIND
	5.3.6.15 RSSI_QUALIFY
	5.3.6.16 PROMISCUOUS_MODE
	5.3.6.17 DAL_ENABLE

	5.3.7 Platform and Architecture Portability
	5.3.8 Initialization
	5.3.9 Wireless Protocol Data Payload
	5.3.10 Suspend and Remote Wakeup
	5.3.11 Interrupt Usage/Timing
	5.3.12 Code Performance Analysis

	5.4 USB Interface
	5.4.1 USB Descriptors
	5.4.1.1 Device/Config Descriptors
	5.4.1.2 Keyboard HID Report Descriptor
	5.4.1.3 Mouse/Keyboard HID Report Descriptor

	5.4.2 Keyboard Report Format
	5.4.3 Mouse Report Format
	5.4.4 Battery Level and Link Quality Reports
	5.4.4.1 Requesting a New Battery Reading
	5.4.4.2 Obtaining the RadioParams Report

	5.4.5 Example USB Bus Analyzer (CATC) Traces

	5.5 Development and Debug Environment
	5.5.1 Tools
	5.5.2 Tips and Tricks

	6. Manufacturing Test Support, MTK
	6.1 Introduction
	6.2 MTK Block Diagram
	6.3 MTK Serial Protocol
	6.4 MTK RF Protocol
	6.5 MTK DUT Source Code Porting
	6.6 Accessing MTK in the DUT

	7. Regulatory Testing Results
	7.1 Introduction

	8. Power Considerations
	8.1 RDK Keyboard
	8.1.1 Usage Model
	8.1.2 Current Measurements
	8.1.3 Battery Life Calculations

	8.2 RDK Mouse
	8.2.1 Usage Model
	8.2.2 Current Measurements
	8.2.3 Battery Life Calculations

	9. Software Guide
	9.1 Introduction
	9.2 Software Code Modules
	9.2.1 USB HID API module
	9.2.1.1 CHidDevice Class Methods
	9.2.1.2 CHidManager Class Methods

	9.2.2 System Tray Module
	9.2.2.1 CCySysTray Class Methods

	9.2.3 WirelessUSB System Tray Application Module
	9.2.3.1 CWirelessUSBTrayApp Class Methods
	9.2.3.2 CMainFrame Class Methods
	9.2.3.3 CWirelessUSBStatusPropertyPage Class Methods
	9.2.3.4 CWirelessUSBStatusPropertySheet Class Methods
	9.2.3.5 CHidTrayDevice Class Methods
	9.2.3.6 CHidTrayManager Class Methods

	9.3 Development Environment

	Appendix A. References
	Index
	Revision History

